SERIES NG 900
ROAD PAVEMENTS – BITUMINOUS
BOUND MATERIALS

Contents

<table>
<thead>
<tr>
<th>Clause</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG 900</td>
<td>(05/18) General</td>
<td>2</td>
</tr>
<tr>
<td>NG 901</td>
<td>(05/18) Bituminous Pavement Mixtures</td>
<td>2</td>
</tr>
<tr>
<td>NG 902</td>
<td>(05/18) Reclaimed Asphalt</td>
<td>3</td>
</tr>
<tr>
<td>NG 903</td>
<td>(05/18) Placing and Compaction of Bituminous Mixtures</td>
<td>3</td>
</tr>
<tr>
<td>NG 904</td>
<td>(05/18) Hot Rolled Asphalt Base</td>
<td>5</td>
</tr>
<tr>
<td>NG 905</td>
<td>(05/18) Hot Rolled Asphalt Binder Course (Recipe Mixtures)</td>
<td>6</td>
</tr>
<tr>
<td>NG 906</td>
<td>(05/18) Dense Base and Binder Course Asphalt Concrete (Recipe mixtures)</td>
<td>6</td>
</tr>
<tr>
<td>NG 909</td>
<td>(05/18) 6mm Dense Asphalt Concrete Surface Course</td>
<td>6</td>
</tr>
<tr>
<td>NG 910</td>
<td>(05/18) Hot Rolled Asphalt Surface Course (Recipe Mixtures)</td>
<td>6</td>
</tr>
<tr>
<td>NG 911</td>
<td>(05/18) Hot Rolled Asphalt Surface Course (Design Mixtures)</td>
<td>6</td>
</tr>
<tr>
<td>NG 912</td>
<td>(05/18) Close Graded Asphalt Concrete Surface Course</td>
<td>6</td>
</tr>
<tr>
<td>NG 915</td>
<td>(05/18) Coated Chippings for Application to Hot Rolled Asphalt Surfacings</td>
<td>7</td>
</tr>
<tr>
<td>NG 916</td>
<td>(05/18) Open Graded Asphalt Concrete Surface Course</td>
<td>7</td>
</tr>
<tr>
<td>NG 918</td>
<td>(05/18) Slurry Surfacing Incorporating Microsurfacing</td>
<td>7</td>
</tr>
<tr>
<td>NG 919</td>
<td>(05/18) Surface Dressing: Recipe Specification</td>
<td>13</td>
</tr>
<tr>
<td>NG 920</td>
<td>(05/18) Bond Coats, Tack Coats and Other Bituminous Sprays</td>
<td>17</td>
</tr>
<tr>
<td>NG 921</td>
<td>(05/18) Surface Macrotexture of Bituminous Surface Courses</td>
<td>18</td>
</tr>
<tr>
<td>NG 922</td>
<td>(05/18) Surface Dressing: Design, Application and End Product Performance</td>
<td>18</td>
</tr>
<tr>
<td>NG 924</td>
<td>(05/18) High Friction Surfaces</td>
<td>26</td>
</tr>
<tr>
<td>NG 925</td>
<td>(05/18) Sampling and Testing of Bituminous Mixtures</td>
<td>27</td>
</tr>
<tr>
<td>NG 926</td>
<td>(05/18) In Situ Recycling: The Repave Process</td>
<td>28</td>
</tr>
<tr>
<td>NG 929</td>
<td>(05/18) Dense Base and Binder Course Asphalt Concrete (Design Mixtures)</td>
<td>28</td>
</tr>
<tr>
<td>NG 930</td>
<td>(05/18) EME2 Base and Binder Course Asphalt Concrete</td>
<td>31</td>
</tr>
<tr>
<td>NG 937</td>
<td>(05/18) Stone Mastic Asphalt (SMA) Binder Course and Regulating Course</td>
<td>31</td>
</tr>
<tr>
<td>NG 938</td>
<td>(05/18) Porous Asphalt Surface Course</td>
<td>32</td>
</tr>
<tr>
<td>NG 942</td>
<td>(05/18) Thin Surface Course Systems</td>
<td>32</td>
</tr>
<tr>
<td>NG 943</td>
<td>(05/18) Hot Rolled Asphalt Surface Course and Binder Course (Performance-Related Design Mix)</td>
<td>37</td>
</tr>
<tr>
<td>NG 945</td>
<td>(05/18) Weather Conditions for Laying of Bituminous Materials</td>
<td>39</td>
</tr>
<tr>
<td>NG 948</td>
<td>(05/18) Ex Situ Cold Recycled Bound Material</td>
<td>39</td>
</tr>
<tr>
<td>NG 954</td>
<td>(05/18) Method of Laboratory Determination of Interface Properties Using the Modified Leutner Shear Test</td>
<td>42</td>
</tr>
<tr>
<td>NG 955</td>
<td>(05/18) Ageing Profile Test Using a Modified Rolling Thin Film Oven Test (MRTFOT)</td>
<td>43</td>
</tr>
</tbody>
</table>

NATIONAL ALTERATIONS OF THE OVERSEEING ORGANISATIONS OF SCOTLAND, WALES AND NORTHERN IRELAND

<table>
<thead>
<tr>
<th>Clause</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG 911TS</td>
<td>(05/18) Rolled Asphalt Surface Course (Design Mixtures)</td>
<td>S1F</td>
</tr>
<tr>
<td>NG 911WG</td>
<td>(05/18) Rolled Asphalt Surface Course (Design Mixtures)</td>
<td>W1F</td>
</tr>
</tbody>
</table>

denotes a Clause or Sample Contract Specific Appendix which has a substitute National Clause or Sample Contract Specific Appendix for one or more of the Overseeing Organisations of Scotland, Wales or Northern Ireland.
ROAD PAVEMENTS – BITUMINOUS BOUND MATERIALS

NG 900 (05/18) General

1 (05/18) Advice on the design, construction and maintenance of bituminous roads is given in the Design Manual for Roads and Bridges (DMRB), Volume 7.

NG 901 (05/18) Bituminous Pavement Mixtures

(05/18) General

1 (05/18) Current pavement design methods may give the Contractor a choice of construction materials. The extent of this choice should be stated in contract specific Appendix 7/1 and the alternative materials identified by reference to the Specification Clause numbers. Bituminous mixture specifications are given in the relevant parts of BS EN 13108 with guidance on the requirements to be selected in the UK in BSI PD6691.

2 (05/18) Requirements included in contract specific Appendix 7/1 may include penetration reference of binder and aggregate properties such as polished stone value, aggregate abrasion value, resistance to fragmentation, resistance to freezing and thawing, and water absorption as specified in BS EN 13043.

3 (05/18) Sub-Clause 2 details the Sector Scheme which is mandatory for laying of bituminous mixtures. The requirements for bituminous mixtures to be in accordance with standards harmonised under the Construction Products Regulation and be CE marked means that the manufacturers are obliged to make a declaration of performance for each mixture. The declaration of performance should contain the performance information to confirm that the mixture meets the requirements stated in the specification including those contained in the contract specific Appendices. The Series 900 Clauses and Clause 104 require the declarations to be submitted in order to demonstrate the performance characteristics of the mixtures. The mixture components, bitumen and aggregate, are also required to be CE marked under the regulation and so in some instances the Contractor is also obliged to submit the declarations of performance for components.

(05/18) Aggregates for Bituminous Mixtures

4 (05/18) The use of natural, recovered unbound and artificial aggregates is permitted. In this context, recovered unbound aggregates are natural aggregates recovered from a previous use in an unbound form which satisfy the requirements of Clause 901.

5 (05/18) Guidance on the use of BS EN 13043 can be found in PD 6682-2.

(05/18) Resistance to Fragmentation (Hardness)

6 (05/18) Regional knowledge may indicate that particular aggregates with higher levels of Los Angeles coefficient can be accepted, where these aggregates have given satisfactory service. It is expected that aggregates with a higher coefficient than that specified could be acceptable, provided the cleanness and durability criteria are satisfactory.

(05/18) Resistance to Freezing and Thawing (Durability)

7 (05/18) The soundness value test should initially be used for source acceptance of aggregates, and thereafter only in cases where their durability is suspect. Where local experience indicates that an aggregate with a lower soundness value than that specified may be suitable, details of the aggregate and the appropriate soundness value should be inserted in contract specific Appendix 7/1. The soundness value test is not intended as a mandatory test for known durable aggregates. The water absorption test can be used as a routine check test of such aggregates. When required, details of contract compliance tests should be scheduled in contract specific Appendix 1/5.
A water absorption value of 2% or less for coarse aggregates is considered to indicate a satisfactory aggregate source. (This value may be exceeded by fine aggregates.) When absorption values of coarse aggregates exceed the recommended W_{A2}^{2}, magnesium sulfate soundness tests should be carried out for compliance purposes. BS EN 13043 indicates that the water absorption test is not applicable for blast furnace slag aggregates. Blast furnace slag aggregates with absorption values up to 8% have been shown to have acceptable soundness. Therefore, the durability of blast furnace slag aggregates should be determined by periodic measurement of soundness.

(05/18) **Cleanness**

There is no current test procedure for cleanness other than the requirement for aggregates to meet the specified BS EN 13108 requirements for the fraction passing the 0.063 mm sieve. Provided the aggregates meet requirements for particle size distribution, based on the washing and sieving techniques of BS EN 933-1, it is considered the cleanness aspect of the aggregates will be acceptable.

However, the coarse aggregates should be checked to ensure they are not coated with clay or silt after having gone through the drying plant and before being coated with bitumen.

(05/18) **Resistance to Polishing and Surface Abrasion**

The Design Manual for Roads and Bridges HD 36 (DMRB 7.5.1) gives guidance on aggregate properties for new bituminous surfacing.

(05/18) **Bitumen**

Cutback binders shall not be used.

(05/18) **Reclaimed Asphalt**

Reclaimed asphalt includes millings, planings, return loads from site and off-cuts from bituminous layer joint preparation. Return loads can include bituminous mixtures rejected from site due to temperature problems or visual defects. Waste bituminous mixtures stockpiled at the plant may also be suitable.

To ensure homogeneity and consistency of the final product, all reclaimed materials should be granulated or crushed or similarly prepared before mixing with fresh aggregate and bitumen. It may be possible to add some planings and millings directly at the plant without any form of pre-treatment when the proportion added is less than 10%. The grading of reclaimed asphalt will generally need to be more closely controlled than that of freshly won natural aggregate, particularly when the reclaimed asphalt is obtained from more than one source.

The BS EN 13108 standards include provisions for ensuring that the properties of the combined binder are appropriate for the mixture. Limits for the minimum penetration category are included in BSI PD6691 and these should be adhered to unless there is experience of suitable alternatives. Mix design procedures are not specified, these being left to the expertise of the Contractor who will have to comply with the type testing requirements of BS EN 13108-20.

Materials containing tar or tar-based binders shall not be recycled using hot processes because of health considerations; some cold processes may be suitable and safe. The environmental impact of recycling materials containing polymer modified binder should be assessed, together with the properties of the mixture, and reported to the Overseeing Organisation. There is no requirement to check the quality of the aggregate in the recycled materials, it being presumed that as these come from existing pavements, or from material that was intended for new works, and that the aggregate quality is adequate for reuse.

(05/18) **Placing and Compaction of Bituminous Mixtures**

The purpose of this clause is to define the laying and compaction procedures that will maximise the durability of the finished pavement. It has been drafted to ensure compatibility with the general specifications...
for the transport, placing and compaction of asphalt mixtures given in BS 594987 and with other appropriate
Clauses (929, 930, 942 and 945) and should always be read in conjunction with the above documents as they relate
to the particular application.

2 (05/18) Certain key factors are important in maximising the durability of the finished pavement and should be
reviewed before work commences. These are as follows.

 (i) Mechanical laying wherever practicable.
 (ii) Bonding of layers.
 (iii) Good compaction, particularly at joints.
 (iv) Pre-planning of compaction process.
 (v) Sealing of edges and joints to prevent water ingress.

3 (05/18) Clause 903 applies to the surfacing overlaying bridge decks but does not relate to laying waterproofing
systems. When laying hot paving materials on bridge deck waterproofing systems, care must be taken to follow
the guidance given in IAN 96/07. Appropriate measures should be taken to ensure that the bond system is fully
activated by sufficient heat but that the waterproofing system is not damaged by excessive heat.

(05/18) Laying

4 (05/18) Materials should be laid by paver unless there are small or inaccessible areas where hand laying is
the only practicable method. Pavers should be used with the minimum of hand raking and making up. The use
of automatic levelling devices should be encouraged and, where possible, greater emphasis should be given to
evenness rather than levels, provided that pavement thickness and clearances at structures are achieved. This
approach is particularly relevant when thick layers of base are being used to minimise the number of horizontal
interfaces.

5 (05/18) As far as practicable, the paver should work continuously without stopping. Stops can adversely affect
the ride quality of the finished pavement. Therefore, there should be sufficient mixed material on site when paving
commences to ensure that lack of supply will not stop operations. However, an excess number of delivery vehicles
should also be avoided as it can result in congestion on site and an extended time between mixing and laying for
each load.

(05/18) Compaction

6 (05/18) It is important that an effective compaction plan appropriate to the site circumstances is in place and is
understood by the paving crew. This is a requirement of sub-Clause 903.5.

7 (05/18) There is no conclusive evidence to show all vibratory rollers provide consistently greater compaction
than that achieved with conventional deadweight rollers. It is desirable that compaction should be maximised so
site trials of vibratory rollers, proposed as an alternative to conventional deadweight rollers, may be beneficial. The
trial should not only determine the required number of passes of the vibratory roller, but also the frequency and
amplitude of the vibrating rolls and roller speed. Additional advice is included in TRRL Report LR 1102. Where
evidence is provided by the Contractor to indicate a proposed vibratory roller will achieve adequate compaction,
the evidence should be representative of the conditions likely to be encountered in the works. Factors which are
relevant include types of compacted material and source of aggregate, the thickness and temperature of layers
and the condition of the proposed roller compared with that previously used. Site trials are not required to prove
vibrating rollers where the final density or air voids is measured as compaction is then a controlled parameter.

8 (05/18) If compaction trials have been carried out, the frequency and amplitude of vibrating rollers and
travelling speed of the roller which have been found to be satisfactory should be used. The Contractor can use
equations [1] and [2], to select the paving and rolling rates to achieve the minimum number of roller passes
required before the surfacing has cooled to the minimum temperature for compaction:

\[
\text{Rolling length (m) = average paving speed \ (m/min) \times T \ (min) \quad \ldots [1]}
\]

\[
\text{Roller passes = \left(\frac{\text{Rolling rate/Paving Rate}}{\text{No of Rollers}} \right) \times \text{No of Rollers} \quad \ldots [2]}
\]
where:

\[
\text{Rolling rate (m}^2/\text{min}) = \text{Roller width (m)} \times \text{Roller speed (m/min)}
\]

\[
\text{Paver rate (m}^2/\text{min}) = \text{Paver width (m)} \times \text{Paver speed (m/min)}
\]

\[
T = \text{time required for compaction (usually 10 min for HRA and 8 min for mixtures without pre-coated chippings)}
\]

(05/18) When reliance is placed on a method specification for the control of compaction of bituminous mixtures, close attention should be paid to the temperature of the material. BS 5949/87 lays down minimum temperatures at which compaction should be substantially complete. It will, therefore, be necessary to commence rolling at temperatures exceeding the minimum, making due allowance for weather conditions, which may affect the rate of cooling of the laid material. NG 945 for cold weather working gives useful advice. For hot weather, TRL Report 494 ‘The Behaviour of Asphalt in Adverse Hot Weather Conditions’ gives useful advice on the subject. For all practical purposes where material is tested for adequacy of compaction in accordance with Clauses 929, 930 and 937, the requirements should have been achieved above the minimum rolling temperature. Any subsequent rolling at temperatures below the minimum should only be necessary to remove roller marks and regulate the surface.

(05/18) Inter-layer Bond

(05/18) Inter-layer bond is essential to prevent ingress of water and resultant deterioration of the pavement. It is also important to ensure that the pavement acts as a homogenous structure. BS 5949/87 and Clause 920 give explicit and comprehensive requirements that should be followed. It is difficult to overestimate the importance of bond. Generally, it is good practice to lay bases in thicker lifts to minimise the number of layers and, hence, interfaces (giving due consideration to the maximum layer thicknesses given in BS 5949/87).

(05/18) Joints

(05/18) However, a joint in a bituminous layer is constructed, it will always be the weakest part of the pavement. Therefore, it is good practice, wherever possible, to minimise the number of cold joints by, for example, using wide screeds and/or paving in echelon.

(05/18) Joints should always be located in low stress areas of the pavement wherever practicable, as indicated in sub-Clause 903.21. However, where an existing road surface is being replaced, it is permitted to locate the longitudinal joints within the surfacing material in the middle of a traffic lane. This position should only be selected if positioning the joint under the lane edge or lane marking would result in significant areas of sound surface course material being unnecessarily replaced. Joints should never be placed in the wheel-track zones.

(05/18) Compaction at joints with unsupported edges will never be as good as in the body of the mat. This is recognised in the air void content requirements in sub-Clausen 903.24, 929.15 and 930.15.

(05/18) To guard against ingress of water at joints, Sub-Clause 903.22 requires binder to be applied to the vertical face prior to laying the adjacent mat in order to improve bond and Sub-Clause 903.25 requires overbanding to seal the surface of the joint.

(05/18) To ensure that water does not enter the pavement from the side, sub-Clause 903.26 requires sealing the edges of the finished pavement. This is always required for the high side of the elevation. Sealing of the low side is conditional on whether it is necessary to let water out or stop water getting into the pavement. The selection is a design issue and should be specified in Schedule 4 of contract specific Appendix 7/1.

NG 904 (05/18) Hot Rolled Asphalt Base

(05/18) The mixture designation should be chosen to suit the thickness of the layer as indicated in BS 5949/87 Table 6B.

(05/18) The binder grade to be used should be stated in contract specific Appendix 7/1. The normal grade is 40/60 although 30/45 may be specified, particularly for very heavy duty use.
NG 905 (05/18) Hot Rolled Asphalt Binder Course (Recipe Mixtures)

1 (05/18) The mixture designation should be chosen to suit the thickness of the layer as indicated in BS 594987 Table 6B.

2 (05/18) The binder grade to be used should be stated in contract specific Appendix 7/1. The normal grade is 40/60 although 30/45 may be specified, particularly for very heavy duty use.

NG 906 (05/18) Dense Base and Binder Course Asphalt Concrete (Recipe Mixtures)

1 (05/18) The mixture designation should be chosen to suit the thickness of the layer as indicated in BS 594987 Table 6A.

NG 909 (05/18) 6mm Dense Asphalt Concrete Surface Course

1 (05/18) The penetration grade of binder should be stated in contract specific Appendix 7/1 as part of the mixture designation and be that which is suitable for the design traffic. Advice on the design of bituminous roads can be found in the Design Manual for Roads and Bridges (DMRB), Volume 7. Further advice is given in BSI PD6691.

NG 910 (05/18) Hot Rolled Asphalt Surface Course (Recipe Mixtures)

1 (05/18) Recipe HRA mixtures should generally only be used in relatively lightly trafficked situations and where there is some knowledge of the performance expected from local mixtures. Where more detailed knowledge exists, design mixtures to Clause 911 can be specified or for the most onerous conditions performance related mixtures to Clause 943.

2 (05/18) The mixture designation should be chosen to suit the thickness of the layer as indicated in BS 594987 Table 6B.

3 (05/18) The binder grade to be used should be stated in contract specific Appendix 7/1. The normal grade is 40/60 although 30/45 may be specified, particularly for very heavy duty use.

#NG 911 (05/18) Hot Rolled Asphalt Surface Course (Design Mixtures)

1 (05/18) The special requirements included in contract specific Appendix 7/1 may include specific mix designations, binder grade and for 30% and 35% stone content mixtures, the required properties of coated chippings in accordance with Clause 915.

2 (05/18) The method for determining the design binder content for surface course is described in BS 594987 Annex H. The target binder content in the mixture will normally be the higher of the design binder content and the minimum binder content indicated in BSI PD6691 Annex C Table C 2A or C 2C as appropriate.

3 (05/18) The Contractor may usually be permitted to use either type C or type F mixtures.

4 (05/18) In the past, Marshall properties, such as stability and flow, were used as indicators of resistance to permanent deformation, but this is no longer included as an option in the BS EN 13108 standards. In very heavily trafficked situations, where resistance to permanent deformation is of high importance, it is recommended that performance related Hot Rolled Asphalt to Clause 943 is used.

NG 912 (05/18) Close Graded Asphalt Concrete Surface Course

1 (05/18) The size of the mixture should be chosen to suit the thickness of the layer as indicated in BS 594987 Table 6A.
NG 915 (05/18) **Coated Chippings for Application to Hot Rolled Asphalt Surfacing**

1. (05/18) Generally, 14/20mm chippings are required to achieve an initial texture depth of 1.5mm and maintain a suitable texture under traffic. For low speed applications, particularly high stress areas such as roundabouts, lower rates of application and 8/14mm chippings combined with lower requirements for texture depth are appropriate.

2. (05/18) The condition of the binder film at the time of application is critical in achieving good adhesion to the asphalt. The hot sand test in BS EN 12697-37 and the requirement in BS EN 13108-4 and BSI PD6691 C.2.8.4 provide a means for establishing their suitability.

3. (05/18) The binder film can be adversely affected in the following ways:
 - excessive mixing temperature leading to hardening;
 - storage of hot or warm chippings in large stockpiles resulting in ‘coking’ (to prevent this, chippings should be cooled as quickly as possible after mixing and should be stored in stockpiles no more than one metre in height);
 - contamination with dirt and dust.

4. (05/18) It is good practice to sheet chipping stockpiles on site in the winter to stop them becoming too cold, particularly in frosty conditions as this can make achieving adhesion more difficult.

NG 916 (05/18) **Open Graded Asphalt Concrete Surface Course**

1. (05/18) The size of the mixture should be chosen to suit the thickness of the layer as indicated in BS 5949 87 Table 6A.

NG 918 (05/18) **Slurry Surfacing Incorporating Microsurfacing**

1. (05/18) Slurry surfacing is covered by BS EN 12273.

2. (05/18) The specification contains elements of performance-related testing of materials for contract compliance, quality control of the process and end product performance. The responsibility for the design of the surfacing belongs to the Contractor and there is performance measurement of the surfacing, measured at the end of the guarantee period. The guarantee period is normally two years for trunk roads including motorways, heavily trafficked or highly stressed roads, and one year for other roads.

3. (05/18) The specification allows considerable freedom to the Contractor in the formulation and application of the Slurry Surfacing. All Design Proposals must be supported by trials, which would normally have been carried out during routine work, but have been fully documented as a Type Approval Installation Trial (TAIT) in accordance with BS EN 12273. The Contractor may choose any number of TAITs to cover the range of products he is prepared to install. A TAIT is suitable for all untrafficked areas such as footways, central reserves, traffic islands etc, cycle ways, tracks and paths and roads carrying less than 250 cv/lane/day with a speed limit of 60 mph or less. For all roads carrying more than 250 cv/lane/day and/or roads with speed limits greater than 60 mph. Clause 942 should be used. These are roads where the Slurry Surfacing would be in direct competition with thin hot-mixed asphalts and should meet the same requirements.

4. (05/18) All coloured materials whether using bituminous emulsion or specially formulated light coloured binders should be specified using the appropriate end performance criteria. Accelerated ageing and weathering tests with colour identification tests have been developed to demonstrate colour retention by HAPAS.

5. (05/18) Low tyre-noise emission Slurry Surfacing may be specified by limiting the maximum macrotexture depth in contract specific Appendix 7/7. Previously for Clause 942 materials the noise emission reduction has been demonstrated for the HAPAS Roads and Bridges Certificate measured by the Statistical Pass-by method BS EN ISO 11819-1 and certified by accrediting organisations, it is categorised by Road Surface Influence (RSI).

6. (05/18) Tenderers are expected to visit all the sites, to assess the parameters required, and in conjunction with those given in the Appendices, to design a suitable Slurry Surfacing.
Basic details of the tendered design for each site should be completed in the Design Proposal and TAIT certificates for similar sites provided.

If any site is considered by the tenderer to be unsuitable for Slurry Surfacing this should be stated in the Design Proposal. There may be sections where the existing road surface is considered not suitable for treatment or the performance requirements are too onerous to be achieved in practice.

When preparing the instructions for tendering it is essential that the compiler includes the following information and instructions adapted as necessary to suit the particular conditions of contract and form of contract:

(i) Tenderers’ attention is drawn to the requirement that Tenderers intending to sub-contract Slurry Surfacing must nevertheless provide with their tender all the information required by Clause 918 and contract specific Appendix 7/7.

(ii) In determining the award of the Contract, regard will be had not only to the price tendered but also to the following criteria:

(a) the Contract time period entered in the Form of Tender by the Tenderer;
(b) the requirements of contract specific Appendix 7/7 assessed as follows:

<table>
<thead>
<tr>
<th>Contract Duration</th>
<th>Design Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>All tenders will be evaluated against the lowest submitted Contract period.</td>
<td>All tenders will be evaluated considering the Estimated Design Life stated in the TAIT Certificate.</td>
</tr>
</tbody>
</table>

Any tender not complying with the submission of the following information in accordance with the contract will not be considered:

- QA registrations.
- Method Statement.
- Design Proposal.
- Declaration(s) of Performance.
- Traffic Management.
- Contingency Plans.
- Test Results.
- Previous Applications.

Contractors should recognise the need for best practice as described in the Road Surface Treatments Association (RSTA) Code of Practice for Slurry Surfacing.

The Estimated Design Life is required in order to assist in the assessment of tenders on a value for money basis; it is often the case that more expensive designs last longer. The end of the Design Life is the time at which the surfacing should no longer be expected to provide the surface properties required at the site in question. (This is a separate consideration from the guarantee period and does not imply a guarantee that the life will always be attained). Further guidance on the Design Life of Surface Treatments including Slurry Surfacings has been published by RSTA and ADEPT.

The responsibility for the provision of information upon which to base the design should be set out in the contract, but it is expected that the compiler would provide the traffic data, the classification of the site in accordance with HD 36 (DMRB 7.5.1) and the minimum requirements for aggregate properties. The compiler should set out any limitations on the availability of a site in contract specific Appendix 1/13. These limitations could include requirements to avoid the site at rush hours, on market days or for particular events already planned at the time of writing the contract. When the Contractor makes his site visit for the purposes of tendering he should make a visual assessment of the road surface and traffic category and bring any anomalies about the site to the attention of the Overseeing Organisation.
13 (05/18) For the purposes of the contract, monitoring will stop at the end of the guarantee period, or for novel or innovative materials, after one-third of the stated Estimated Design Life, but in order to check the proposed Design Life against the actual achieved life, monitoring should continue for the whole life of the Slurry Surfacing. On heavily trafficked roads this can most conveniently be done by means of the texture output from TRACS (TRAffic-speed Condition Survey) surveys, which are currently carried out on all trunk roads every 2 years and SCRM surveys, which are carried out annually. For other roads volumetric patch technique or use of the mini texture meter or other device calibrated against glass spheres values as Glass Spheres Patch Equivalent values, may be more convenient.

14 (05/18) The Vialit pendulum test should be carried out using BS EN 13588 on the recovered binder used to manufacture the Slurry Surfacing. The minimum binder cohesion at peak measured using the Vialit Pendulum should be reported. The range of temperature for modified binders for a value of 1.0 J/cm² provides another parameter for evaluation of the modification.

15 (05/18) Penetration, softening point, Fraass Brittle point, toughness, tenacity, and other viscosity measurements are not in themselves sufficient as product identification tests, although they may be useful as quick or low cost Quality Assurance tests to check consistency from load to load of the binder. The Contractor’s Design Proposal should provide a declaration of performance giving at least the information specified. In order to set a standard the contract compliance test has been standardised using the results from a dynamic shear rheometer of complex shear (stiffness) modulus and phase angle as specified in BS EN 14770. If the supplier considers that other tests would identify his binder more precisely then he may provide the results of these additional tests in addition to the requirements of sub-Clause 918.7 and add them to the Binder Data Sheet in contract specific Appendix 7/7. Other recovery test methods may be used to provide residual binder for subsequent testing and these may be convenient for quality control purposes, however, the definitive test is Clause 955 and results for BS EN 14770 and BS EN 13588 for contract compliance purposes will be based on recovered binder from Clause 955.

16 (05/18) The compiler should specify the minimum PSV required for a particular site together with the maximum AAV. Guidance on the levels to specify is given in HD 36 (DMRB 7.5.1); over specification should be avoided in order to conserve scarce resources. Where coloured Slurry Surfacing is used on the carriageway, even in small areas like ‘village gates’ they should have adequate skidding resistance. As they are usually fairly thin it is not possible to provide deep macrotexture.

17 (05/18) Repairs to the existing road in preparation for Slurry Surfacing (for example, patching), should be carried out well in advance of the works. They should be carried out in such a manner that the hardness and macrotexture of the remedial work is sufficiently similar to the rest of the road to avoid problems of variable appearance and behaviour in the completed Slurry Surfacing for at least the duration of the maintenance period. The existing road variability and surface characteristics have a bearing on the achievable levels of performance that may be specified. If the existing surface is hot rolled asphalt then the patches will ideally be laid with hot rolled asphalt. Thin asphalt surfacings should be repaired with stone mastic asphalt of similar consistency and highly textured variable substrates should be treated with a polymer modified Bond Coat. Patches should not have a horizontal sealing strip applied as this will show through thin Slurry Surfacing reducing macrotexture, similarly binder-rich soft materials used to seal cracks similar to stress absorbing membrane interlayers (SAMIs) should not be used, especially longitudinally in the wheel tracks.

18 (05/18) The minimum and/or maximum thicknesses at which the Slurry Surfacing is to be laid should only be specified where there are specific reasons for so doing. If the Slurry Surfacing is being laid purely to restore surface characteristics such as skid resistance and macrotexture depth, the choice of thickness should not be restricted. One reason for specifying a minimum thickness is to improve the profile. For rut filling this is often accomplished by the application of two layers, sometimes using different materials. This should be described in the Design Proposal.

19 (05/18) Cleanliness of the existing surface is extremely important. The Slurry Surfacing will adhere only to the top layer of the material on which it is placed and if this is mud or dust then the surfacing will fail, lacking bond with the underlying structure. It may be found necessary in some circumstances to use high pressure washing to remove strongly adherent material. The masking of street furniture should be carried out very carefully as any cover must not be rendered immovable. In order to give a clean straight joint at the beginning and end of the work all start and finish points should be masked with a suitable material about 1 m wide for machine laid work and 0.5 m for hand laid work, or an alternative, documented, procedure producing a similar outcome may be used.
20 (05/18) General weather limitations should be covered by the Contractor’s Quality Plan. Any site specific weather limitations should be specified under ‘Special restrictions’ in contract specific Appendix 7/7.

21 (05/18) Traffic control immediately after Slurry Surfacing is critical to the production of a good quality surface. The surface should not be trafficked at all until the Slurry Surfacing has set sufficiently to enable it to take the traffic stresses that will be imposed. Too early opening will lead to damage and loss of material, which will require additional remedial work before the Contractor may leave the site. The surface should be monitored closely during early trafficking and if there are signs of distress due to inadequate curing the traffic control regime should be altered to keep the traffic off the Slurry Surfacing until it has gained adequate strength. Strength gain will be particularly slow in conditions of high humidity and/or low temperatures, i.e. those conditions where the rate of evaporation of the water from the Slurry Surfacing is reduced. Traffickability time and mixture cohesion tests are relevant in this context.

22 (05/18) As part of the normal traffic control mechanism for high-speed roads there should be a mandatory temporary speed limit in place for the duration of the work. Therefore, if Slurry Surfacing is being used in this situation (assuming a design is produced and approval given) it should be designed to be opened to traffic travelling at the temporary speed limit on completion of initial sweeping. There should follow a number of days of trafficking at this speed with the traffic management being organised in such a manner that all lanes have at least 48 hours of speed limited trafficking within a minimum of 72 hours of first opening the carriageway to controlled traffic. This period, or such other, longer period, that either the compiler states in contract specific Appendix 7/7 or the Contractor requires for his process should be included within the works programme. The Overseeing Organisation will not normally require a longer period than this but may do so if the traffic on the section of road is unusually light or the work is required to be carried late in the season, i.e. during October. The Contractor will determine the need for a longer period from experience with the particular process that is proposed. All loose aggregate should be removed from any traffickable part of the carriageway or hard shoulder prior to removing the temporary contract speed limit from the works.

23 (05/18) Care should be taken to ensure that the Slurry Surfacing bonds adequately to the underlying surface as with these relatively thin materials it is absolutely essential for there to be a good bond if early failure is to be avoided. Although bond may be checked using a suitable test any unbonded areas are likely to fail within the guarantee period and will be identified during the final visual assessment. Bond coats should normally be used.

24 (05/18) When incorrectly manufactured or laid Slurry Surfacing has poor durability. For Slurry Surfacing placed in a single layer less than about 8 mm thick the assessment of areas of total loss of material at the end of the guarantee period and will be identified during the final visual assessment. Bond coats should normally be used.

25 (05/18) It is important to ensure that all access covers are unmasked and if necessary reset as soon as possible after completion of laying so that their owners may find and use them if required. This is particularly important for fire hydrants, as public safety may be dependent on their visibility and accessibility. It is also easier to match the Slurry Surfacing with additional material if needed and make level adjustments while the Slurry Surfacing team is close-by.

26 (05/18) Macrotexture is measured in the nearside (inside) wheel track where the lane width and traffic are sufficient for this to be identified; for low traffic category sites the track carrying the most traffic (wear) is tested, this may be the outside wheel track for narrow lanes where tyre paths in both directions overlap. High-speed sensor measurements should be used for measuring macrotexture depth on high-speed and heavily trafficked roads because of the amount of macrotexture depth measurement to be undertaken. This form of measurement avoids the need for additional lane closures, which use of volumetric patch technique or the mini texture meter would require. Other methods may be used, but the results should be reported as Patch Equivalent values. Lightly trafficked roads should be assessed for cleanliness and cleaned if necessary before measurements are made. This would not normally be necessary on roads carrying heavy or fast traffic. The use of high-speed measurements also enables long term monitoring as part of the routine TRACS surveys. The macrotexture depth for Slurry Surfacing on high-speed heavily trafficked roads (Clause 942 would normally be used to specify slurry surfacing on these roads) at the end of the guarantee period would normally be specified at 1.5 mm measured by the volumetric patch technique. Depending on traffic levels, lower macrotextures at the end of the guarantee period may be specified in contract specific Appendix 7/7 for lower speed roads.
TABLE NG 9/1: (05/18) Minimum Patch Macrotexture Depth Requirements (or Volumetric Patch Equivalent) in the Nearside Wheel Track at the End of the Guarantee Period

<table>
<thead>
<tr>
<th>Traffic cv/lane/day</th>
<th>Speed limit 50 mph or 60 mph Patch Macrotexture (mm)</th>
<th>Speed limit 40 mph or lower Patch Macrotexture (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 to 250</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>10 to 50</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Below 10</td>
<td>1.0</td>
<td>No requirement</td>
</tr>
<tr>
<td>More than 250 (or speed limit greater than 60 mph)</td>
<td>Not Applicable to this Clause, see Clause 942: Thin Surface Course Systems</td>
<td></td>
</tr>
</tbody>
</table>

27 (05/18) Visual assessment of defects should be carried out in accordance with BS EN 12274-8. It is anticipated that because Slurry Surfacing defects are usually obvious the need for a full assessment procedure will be rare. The visual assessment of area defects is classified in Table NG 9/2. The category appropriate to the site should be specified in contract specific Appendix 7/7.

TABLE NG 9/2: (05/18) Defect Classification: Area

<table>
<thead>
<tr>
<th>Defect Classification</th>
<th>P₁, Bleeding Fatting up and Tracking</th>
<th>P₂, Detamination, Loss of Aggregate, Wearing, Lane Joint Gaps Rutting and Slippage</th>
<th>P₃, Corrugation, Bumps and Ridges</th>
<th>P₄, Groups of Small Defects or Repetitive Defects</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>Maximum % of Area Affected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorways and Dual carriageways</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2 in not more than 1 rectangle</td>
<td>4</td>
</tr>
<tr>
<td>Stressed single carriageways</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0 in not more than 2 rectangles</td>
<td>3</td>
</tr>
<tr>
<td>Single carriageways</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>5 in not more than 6 rectangles</td>
<td>2</td>
</tr>
<tr>
<td>Lightly trafficked single carriageways</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>20 in not more than 20 rectangles</td>
<td>1</td>
</tr>
</tbody>
</table>

The visual assessment of linear defects is classified in Table NG 9/3. The class appropriate to the site should be specified in contract specific Appendix 7/7.

TABLE NG 9/3: (05/18) Defect Classification: Linear Defects

<table>
<thead>
<tr>
<th>Site</th>
<th>Total Length of Defects in metres per 100 m</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorway Carriageways and Dual</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Stressed Single Carriageways</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Single Carriageways</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Lightly Trafficked Single Carriageways</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>
28 (05/18) Where a bond coat is proposed in the Design Proposal it shall comply with Clause 920. If the bond between layers is to be assessed then the torque bond test shall be carried out in accordance with Clause 951.

29 (05/18) Materials failing to set or setting too rapidly are caused by defects in workmanship or laying in inappropriate weather conditions. Work should stop and should not recommence until the any application faults have been rectified and the weather conditions are suitable. If the material has not been manufactured in accordance with the design proposal it may not set either adequately or at all and will need removal and replacement.

30 (05/18) Surface irregularity is measured in two ways as described in Clause 702, but as Slurry Surfacing is laid in a different manner to the method assumed in that Clause, Slurry Surfacing should meet the appropriate class given in Table NG 9/4 for transverse regularity and Table NG 9/7 for longitudinal irregularity. The class limits are given in Table NG 9/5 for the former and in Table NG 9/7 for the latter.

TABLE NG 9/4: (05/18) Transverse Regularity – Requirements

<table>
<thead>
<tr>
<th>Site</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual carriageways and single carriageways with a speed limit greater than 40 mph</td>
<td>3</td>
</tr>
<tr>
<td>Single carriageways with a 40 mph or lower speed limit, carrying more than 100 cv/l/d or more than 1000 veh/l/d and roads carrying less traffic where the cross fall is less than 2%</td>
<td>2</td>
</tr>
<tr>
<td>All other roads</td>
<td>1</td>
</tr>
<tr>
<td>Roads where only sealing and improvement to surface characteristics are required (i.e. Regulating is not a requirement)</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE NG 9/5: (05/18) Transverse Regularity – Class Limits

<table>
<thead>
<tr>
<th>Class</th>
<th>Maximum allowable difference between 3 m straight-edge and the road, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>No requirement</td>
</tr>
</tbody>
</table>

TABLE NG 9/6: (05/18) Longitudinal Regularity – Requirements

<table>
<thead>
<tr>
<th>Site</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual carriageways and single carriageways with a speed limit greater than 40 mph</td>
<td>2</td>
</tr>
<tr>
<td>Single carriageways with a 40 mph or lower speed limit, carrying more than 100 cv/l/d or more than 1000 veh l/d</td>
<td>1</td>
</tr>
<tr>
<td>All other roads</td>
<td>0</td>
</tr>
</tbody>
</table>
TABLE NG 9/7: (05/18) Longitudinal Regularity – Class Limits

<table>
<thead>
<tr>
<th>Length</th>
<th>4 mm</th>
<th>7 mm</th>
<th>10 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 m</td>
<td>20</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>75 m</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>any</td>
</tr>
<tr>
<td>Class 3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Class 2</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Class 1</td>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Class 0</td>
<td>No requirement</td>
<td>No requirement</td>
<td>No requirement</td>
</tr>
</tbody>
</table>

31 (05/18) The guarantee period stated in the specification should be clearly stated as applying to the Slurry Surfacing. An appropriate Special Requirement should be included in the Conditions of Contract drawing particular attention to the guarantee period.

NG 919 (05/18) Surface Dressing: Recipe Specification

1 (05/18) Clause 922 should normally be used for surface dressing except in the following circumstances:

(i) Where the Overseeing Organisation has the expertise to design surface dressing, the resources to supervise the works and the desire to accept the additional risks associated with designing the product. No performance criteria can be specified such as visual assessment, macro-texture etc.

(ii) Where the Overseeing Organisation wishes to carry out trial or experimental surface dressing.

(iii) Where the Overseeing Organisation wishes to carry out surface dressing in circumstances that are outside the Road Note 39 parameters such as on extremely variable substrate or out of season work.

(iv) Temporary works such as where skid resistance is needed for a short period.

Note: Knowledge of the network is required whichever Clause is used as the Overseeing Organisation either needs traffic levels and road hardness to design the surface dressing or needs to provide the Contractor with the same data so that the Contractor can carry out the design as in Clause 922.

2 (05/18) The surface dressing should be designed in accordance with Road Note 39. Additional advice is given in HD 37 (DMRB 7.5.2). The stage 1 design binder rate of spread and its minimum grade should be set out in contract specific Appendix 7/21 for each section of the site together with the surface dressing system required and the size or sizes of chippings.

3 (05/18) The Contractor should state with his tender submission the source of his aggregates and the grading and flakiness index for each source and nominal size. This enables the stage 2 rate of spread of binder to be calculated.

4 (05/18) The Contractor should state the source and type of binder he proposes to use together with the data required by contract specific Appendix 7/21.

5 (05/18) The Contractor’s attention should be drawn to the need for best practice, set out in Road Note 39.

6 (05/18) The Vialit pendulum test should be carried out in accordance with BS EN 13588. The minimum binder cohesion at peak measured using the Vialit Pendulum for three grades of binder are given in Table NG 9/8. Guidance as to the choice of binder is given in Road Note 39 and British Standards Published Document PD 6689.
TABLE NG 9/8: (05/18) Vialit Pendulum Test

<table>
<thead>
<tr>
<th>Binder Grade</th>
<th>Minimum Peak Binder Cohesion Joules/cm²</th>
<th>Class in BS EN 13808</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super-premium</td>
<td>1.4</td>
<td>6</td>
</tr>
<tr>
<td>Premium</td>
<td>1.2</td>
<td>5</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.0</td>
<td>4</td>
</tr>
<tr>
<td>Conventional</td>
<td>0.7*</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: The reproducibility has been allowed for when setting these minimum levels and the average value of the peak cohesion for polymer modified binders is likely to be at least 0.3 J/cm² above the minima given in Table NG 9/8.

* For conventional binders where 0.7 is not consistently achieved, 0.5 over a minimum temperature range of 15°C has been found to provide satisfactory performance.

7 (05/18) Product Identification Test: Penetration, softening point, Fraass Brittle point, toughness, tenacity, and other viscosity measurements are not in themselves sufficient as product identification tests, although they can be useful as quick or low cost Quality Assurance tests to check consistency from load to load of the binder. The Contractor should provide a Binder Data Sheet giving at least the information specified. In order to standardise, the product identification test has been based on the results from a dynamic shear rheometer of complex modulus and phase angle (see BS EN 14770). If the supplier considers that other tests would better characterise his binder then he may provide the results of these tests in addition to the requirements of sub-Clause 919.3.

8 (05/18) The binder sprayer should be checked for accuracy of transverse distribution using the test method stated. This assesses the ability of the spraybar in real working conditions and may be carried out quickly using the correct binder. The Depot Tray test to BS 1707 averages the rate of spray over 60 seconds in a static condition and therefore does not simulate site conditions such as the influence of varying spraybar height above the road, or any tendency to pump or pressure surging. The performance of the binder sprayer is classified in accordance with the value of the coefficient of variation (C_v) for the regularity of transverse distribution. The category required for the sprayer, to be specified in contract specific Appendix 7/21, should be selected from Table NG 9/9.

TABLE NG 9/9: (05/18) Accuracy of Binder Sprayer

<table>
<thead>
<tr>
<th>Site</th>
<th>Coefficient of Variation (C_v)</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorways and Dual Carriageways</td>
<td>< 10%*</td>
<td>2*</td>
</tr>
<tr>
<td>Single Carriageways</td>
<td>< 10%</td>
<td>2</td>
</tr>
<tr>
<td>Lightly Trafficked Single Carriageways</td>
<td>< 15%</td>
<td>1</td>
</tr>
</tbody>
</table>

* this C_v and category is appropriate when carpet tiles 100 mm wide and at least 200 mm long are used for the test, where the surface is very even, on dual carriageways and motorways there is a case for specifying category 3. Where 50 mm wide trays are used each two adjacent trays should be averaged before calculating the Coefficient of variation (C_v).

9 (05/18) The compiler should specify the minimum PSV required for a particular site together with the maximum AAV. Guidance on the levels to specify is given in HD 36 (DMRB 7.5.1); over specification should be avoided in order to conserve scarce resources.

10 (05/18) The chipping spreader should be checked for accuracy of transverse distribution using the stated method. With multi-layered surface dressings it is very important to obtain the correct rate of spread of the larger chipping as under or over chipping will reduce the quality of the dressing and may result in it failing to perform as a multi-layered system. Particular attention should be paid to the rate of spread in the vicinity of the overlaps in the
chipping spreader mechanism as the performance, particularly of worn spreaders, can be significantly different in these areas from the rest of the spreader. The performance of the chipping spreader is classified in accordance with the value of the coefficient of variation (C_v) for the regularity of transverse distribution. The category required for the spreader to be specified in contract specific Appendix 7/21 should be selected from Table NG 9/10. The rate of spread for secondary chippings is less important and an excess is usually beneficial so that spreading with, for example, two tail board gritters in echelon are often satisfactory.

TABLE NG 9/10: (05/18) Accuracy of Chipping Spreader

<table>
<thead>
<tr>
<th>Chipping Type</th>
<th>Coefficient of Variation C_v</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary chippings in multiple layer dressings</td>
<td>< 10%</td>
<td>2</td>
</tr>
<tr>
<td>All other chippings</td>
<td>< 15%</td>
<td>1</td>
</tr>
</tbody>
</table>

11 (05/18) Remedial work to the existing road, for example, patching, should be carried out prior to surface dressing. It should be carried out in such a manner that the hardness and macrotexture of the remedial work is sufficiently similar to the rest of the road to avoid problems of variable appearance and behaviour in the completed surface dressing for at least the duration of the maintenance period; for example, patching using close textured bitumen macadam should be carried out in the previous summer otherwise it will absorb bitumen into the voids and chip loss may ensue. If the existing surface is hot rolled asphalt then the patches will have to be laid with hot rolled asphalt and preferably sufficiently far in advance of the works for the binder to wear off the surface otherwise there will be excess binder in that area. Patches should not have a horizontal sealing strip applied as this will show through the dressing very rapidly and has been known to initiate fatting failure. The use of binder rich materials should not be used to pre-seal areas especially longitudinally in the wheel tracks as the dressing will fat up and macrotexture will be lost.

12 (05/18) Cleanliness of the existing road surface is extremely important. The binder will adhere only to the top layer of the material on which it is sprayed and if there is mud or dust then the surface dressing will fail rapidly, through the lack of bond with the underlying structure. It may be necessary in some circumstances to use high pressure washing to remove strongly adherent material. The masking of street furniture should be carried out with care as the interface between the furniture and the surrounding surface should be sprayed in order to exclude water from the road structure, but any cover must not be rendered immovable.

13 (05/18) The mode of operation of surface dressing contracts can necessitate the adoption of techniques requiring equipment for traffic management and safety over and above that normally required by static works. For example, where traffic lights are required as part of the traffic management scheme, in order to facilitate the relocation of the lights, some sites may require the provision of additional sets over and above the minimum necessary, so that the work progresses with a minimum of interruption and disruption to road users.

14 (05/18) General weather limitations should be covered by the Contractor’s Quality Plan. Any site specific weather limitations should be stated in contract specific Appendix 7/21. Further guidance may be obtained from HD 37 (DMRB 7.5.2).

15 (05/18) In order to ensure that only the binder is overlapped on transverse joints the chipping application should stop short of the end of the binder film wherever possible. When spraying from a completed section some hand cannig and masking of the end is necessary in order to abut the joint without forming a ridge.

16 (05/18) Longitudinal joints should have slightly overlapped binder films obtained by leaving a wet edge approximately 100 mm wide. Care should be taken to ensure that double chipping does not take place as this will form a ridge. As the binder overlap is generally in a lightly trafficked location the additional thickness of binder film is unlikely to be a problem. Quartering (spraying of a part bar) should be avoided wherever possible, but may be necessary at tapers and other similar locations. An overlap (up to 300 mm) should be provided to ensure full rate of spread of binder at all points.
The frequency of testing for rates and accuracy of spread of binder and chippings should be stated in contract specific Appendix 1/5. The rate of testing should be reduced once the Contractor has demonstrated his ability to consistently meet the requirements. The more consistent a Contractor is in his work the lower the rate of testing that can be employed, a minimum rate of 1 test per day could be reached if the contract is large enough. The Overseeing Organisation may carry out testing at audit frequency, typically at about 10% of the specified frequency for the Contractor. If the results from this audit testing are significantly different from those of the Contractor, for example, by more than the reproducibility of the test, then the Overseeing Organisation and the Contractor should work together to determine the source of difference. With this type of specification it is important that all the required testing is carried out, preferably under supervision, as it is not possible to assess the rate of spread of either binder or aggregate subsequent to the spreading of those materials.

The allowable tolerance on the design rate of spread of binder is dependent on the site and is classified in Table NG 9/11. The category or categories appropriate to the site should be specified in contract specific Appendix 7/21.

TABLE NG 9/11: (05/18) Tolerance on Design Rate of Spread of Binder

<table>
<thead>
<tr>
<th>Site</th>
<th>Tolerance</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Stressed Sites, Motorways and Dual Carriageways</td>
<td>±5%</td>
<td>3</td>
</tr>
<tr>
<td>Single Carriageways</td>
<td>±10%</td>
<td>2</td>
</tr>
</tbody>
</table>

The allowable tolerance on the design rate of spread of chippings is dependant on the site and is classified in Table NG 9/12. The category or categories appropriate to the site should be specified in contract specific Appendix 7/21.

TABLE NG 9/12: (05/18) Tolerance on Design Rate of Spread of Chippings

<table>
<thead>
<tr>
<th>Site</th>
<th>Tolerance</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Stressed sites, Motorways and Dual Carriageways</td>
<td>±5%</td>
<td>3</td>
</tr>
<tr>
<td>All other sites</td>
<td>±10%</td>
<td>2</td>
</tr>
<tr>
<td>Lightly trafficked Single Carriageways (up to 100 cv/l/d)</td>
<td>±15%</td>
<td>1</td>
</tr>
</tbody>
</table>

Both types of rollers specified are suitable for rolling surface dressing. The aim should be to orientate the chippings and place them in contact with the binder rather than provide compaction. There is some consensus that vibration assists in the break of emulsion binders and a re-roll can help where the ‘cheesy’ stage of an emulsion is prolonged. The ability of the rollers to spray water on to the drums or tyres should be checked before commencement of any work. Although water may not be needed all the time, when it is, it is needed urgently. Heavy steel wheeled rollers tend to crush chippings and their use should not be permitted.

Traffic control immediately after surface dressing is most crucial in the production of good quality surface dressing. On high speed roads the best way of doing this is to introduce convoy vehicles into the traffic stream in order to keep speeds low. The deployment of 10 mph signs, when permitted, is an extremely useful method of inducing caution in the road user. If possible cones should be used to vary the lane position so that as much of the dressing as possible is subjected to slow speed traffic. The lane should be suction swept prior to removal of the convoying vehicles from the traffic stream, care being taken not to remove chippings, which would otherwise become part of the mosaic. With multi-layered surface dressing it may not be necessary to sweep, unless there are windrows which should be removed. If the work has been carried out correctly there will be no loose large chippings. Provided there are no loose large sized chippings it may be useful to gradually increase the speed of the convoying vehicles to disperse excess small chippings to the side of the lane for subsequent removal.
22 (05/18) It is essential that the dressing is monitored for some time after opening to traffic, particularly in hot weather when using cutback binders, as at high temperatures the binder cohesion is low when using emulsions in humid or cool weather, the binder takes longer to gain cohesion. Both conditions result in lower initial resistance to traffic forces and the mosaic may be destroyed. Should this happen the Contractor should be prepared to re-impose traffic control and have on site a suitable “dust” ready to use. The ideal “dust” is light coloured, absorbent and about 4 mm to 1 mm in size. Oolitic limestone and blastfurnace slag are particularly good although other materials available locally may have to be used.

NG 920 (05/18) Bond Coats, Tack Coats and Other Bituminous Sprays

1 (05/18) This Clause specifies tack coats and bond coats for asphalt concrete, hot rolled asphalt and stone mastic asphalt binder course and regulating course. Bond coats and tack coats are applied prior to laying of bituminous mixtures in order to promote the development of a homogeneous pavement structure and to prevent ingress of water. The structural design of pavements assumes that the bond between layers is complete. Bond is particularly important in highly stressed areas. The use of tack or bond coat is a universal requirement when placing bituminous material on any new or existing bound substrate, under Clause 903.4. Further information can be found in BS 594987. The use of tack and bond coats under Thin Surface Course Systems is covered by Clause 942.

2 (05/18) BS 594987 gives recommended application rates of tack and bond coats. Clause 903 converts these recommendations into requirements. A bond coat is more appropriate where greater bond strength or better sealing is required. An example is where materials are to be laid less than 30 mm thick, or where a particular site has a binder lean substrate and permeability is considered a problem. Advice on the choice of tack coat or bond coat is provided in BS 594987. Traditionally a tack coat using C40B4 or C60B3 emulsion has been used to add a little extra binder to an existing surface and is often adequate to initiate adhesion between layers. Bond coats generally have a higher binder content containing modifiers and are usually used at a higher rate of spread thus promoting improved adhesion with some waterproofing capability, important to prevent water ingress below porous or permeable materials. Additional information is provided in HD 37 (DMRB 7.5.2).

3 (05/18) Bond coats may sometimes need to be partially covered with aggregate, to prevent them from being picked up when being walked on or driven over, especially during periods of hot weather. A typical rate of application of chippings is approximately 3 to 5 kg/m². Alternatively, ‘non-tack’ bond coats, which are available from some suppliers, may be used. When these emulsions break, sometimes accelerated using proprietary breaking agents, the residual binder is not as tacky or sticky, only becoming so at the high temperatures associated with the asphalt overlay when they melt at the interface, thereby achieving a bond. These materials are useful for work in urban areas where foot traffic is sometimes unavoidable.

4 (05/18) Rates of spread of binder should follow the recommendations of BS 594987 or the manufacturer’s instructions, as appropriate. Rates of spread may need to be altered for varying macrotexture and porosity of the existing road and an increased rate at the kerb or road edge is beneficial to minimise water ingress where compaction by traffic is least.

5 (05/18) Particular care is required when applying a bituminous surfacing to an existing concrete road as not all emulsions adhere well to concrete. It is likely that one specially formulated for this application will be needed. The adhesion of a bituminous surfacing to newly laid concrete is a special case and evidence of a satisfactory bond should be provided.

6 (05/18) Pendulum Class 4 (previously known as “Intermediate grade”) bond coats or bituminous sprays have a Vialit Pendulum Peak Cohesion minimum value of 1.0 J/cm² on the recovered binder prepared using Clause 955 when measured using BS EN 13808. Pendulum Class 5 (previously known as “Premium grade”) bond coats or bituminous sprays have a Vialit Pendulum Peak Cohesion minimum value of 1.2 J/cm². Pendulum Class 4 or 5 bond coats are recommended when overlaying highly variable surfaces or those of high porosity. Pendulum Class 5 bond coats are recommended for sealing under porous asphalt or for improved bond in highly stressed areas.

7 (05/18) The spread rates for tack and bond coats on hydraulically bound substrates may need to be higher than those required for bituminous substrates.
Bituminous Sprays

8 (05/18) Bituminous sprays may be used to seal and protect earthworks, drainage media, recycled material and cementitious materials including cement-stabilised soil. The primary purpose is not necessarily to promote bond with an overlay, but to limit the evaporation or ingress of water and in cementitious materials, to facilitate proper curing. Cementitious surfaces are alkaline and in warm summer conditions anionic emulsions may be more suitable than cationic emulsions. Anionic emulsions have an alkaline water phase and can penetrate the surface before breaking. It is important that the coverage of residual binder is uniform. Even small areas that remain unsealed will increase evaporation of water and, in cementitious materials, cause premature drying that will inhibit curing. The surface of the sprayed area should normally be covered with light coloured aggregate to reduce the absorption of heat from the sun’s rays and reduce water loss.

(05/18) General

9 (05/18) To enable the Overseeing Organisation to identify each product the Contractor is to supply the declaration of performance for each product and the other information required in Sheet 2 of contract specific Appendix 7/4.

NG 921 (05/18) Surface Macrotexture of Bituminous Surface Courses

1 (05/18) The depth of surface macrotexture is important in the dispersal of surface water from the tyre road contact area in order to maintain skid resistance in the wet at speed. It is most important on high speed roads and different criteria apply to high speed and low speed roads. For the purposes of Clause 921, a low speed road is defined one with a posted speed limit of 40 miles/hour (65 km/h) or less.

2 (05/18) The long established high speed road requirement of a minimum initial texture depth of 1.5 mm applies only to Hot Rolled Asphalt surface course. This is achieved by the application of coated chippings, as described in Clause 915 and BS 594987.

3 (05/18) A minimum initial texture depth of 1.3 mm has been found to be sufficient for high speed roads surfaced using Thin Surface Course Systems to Clause 942.

4 (05/18) Very high surface texture on high stress areas, particularly roundabouts, compromises toughness and durability and renders the surface prone to fretting, chipping loss and deterioration. Since these are rarely high speed roads by definition, it is good practice to adopt lower texture requirements in such situations and a value of 1.2mm is considered appropriate for the trunk road network.

5 (05/18) On low speed roads, good skid resistance is achieved by maximising the area of contact between tyre and aggregate, rather than by achieving high texture. This often means adopting smaller aggregate sizes. In these circumstances, an initial texture depth of 1.0 mm is considered suitable, including roundabouts on low speed non-trunk roads.

6 (05/18) Requirements for retained texture depth for Thin Surface Course Systems specified to Clause 942 are given in that Clause.

7 (05/18) Clause 921 permits the use of the sand patch method in BS 598-105 (now withdrawn) for routine monitoring of initial surface macrotexture. If the sand patch method is used, the sand should be washed and dried silica sand with a rounded particle shape. The grading of the sand should be 100% (by mass) passing the 0.600 mm test sieve; 90 to 100% (by mass) passing the 0.300 mm test sieve; and not more than 15% (by mass) passing the 0.150 mm test sieve.

NG 922 (05/18) Surface Dressing: Design, Application and End Product Performance

1 (05/18) The specification is not of the conventional recipe/method type. It contains elements of performance-related testing of materials for contract compliance, quality control of the process and end product performance and reference should be made to: BS EN 12271, HD 37 (DMRB 7.5.2), Road Note 39 and British Standards Published Document PD 6689. The principal differences from a recipe specification are that responsibility for the design of the dressing is transferred to the Contractor and that there is performance measurement of the Surface Dressing,
measured at intervals throughout a guarantee period specified in the contract. The guarantee period is normally two years for motorways, trunk roads and heavily trafficked or highly stressed roads, and one year for other roads.

2 (05/18) The specification allows considerable freedom for the Contractor in the design of the Surface Dressing provided it complies with BS EN 12271. BS EN 12271 is a harmonised standard under the Construction Products Regulation and as such the surface dressing is required to be CE marked and the manufacture is obliged to make a declaration of performance. The evaluation of conformity requirements in BS EN 12271 include the Type Approval Installation Trial (TAIT).

3 (05/18) Low noise emission Surface Dressings may be specified by limiting the designs to double or multi-layered dressings and/or the maximum macrotexture depth in contract specific Appendix 7/3.

4 (05/18) Tenderers are expected to visit all the sites, to assess the parameters required, and in conjunction with those given in the appendices, to design a suitable surface dressing.

5 (05/18) Basic details of the tendered design for each site should be completed in the Design Proposal and declaration of performance provided.

6 (05/18) If any site is considered by the tenderer to be unsuitable for surface dressing this should be stated in the Design Proposal. There may be sections where the existing road surface is considered not suitable for treatment or the performance requirements are too onerous to be achieved in practice, see HD 37 (DMRB 7.5.2).

7 (05/18) When preparing the instructions for tendering it is essential that the compiler includes the following information and instructions adapted as necessary to suit the particular conditions of contract and form of contract:

(i) Tenderers’ attention is drawn to the requirement that Tenderers intending to sub-contract surface dressing must nevertheless provide with their tender all the information required by Clause 922 and contract specific Appendix 7/3.

(ii) In determining the award of the Contract, regard will be had not only to the price tendered but also to the following criteria:

(a) the Contract time period entered in the Form of Tender by the Tenderer.
(b) the requirements of contract specific Appendix 7/3 assessed as follows:

<table>
<thead>
<tr>
<th>Contract Time Period</th>
<th>All tenders will be evaluated against the lowest submitted Contract period.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durability</td>
<td>All tenders will be evaluated considering the durability categories stated in the declaration of performance.</td>
</tr>
<tr>
<td>QA Certification</td>
<td>Any tender submitting QA registrations which are not valid in the context of this scheme will not be considered.</td>
</tr>
<tr>
<td>Method Statement</td>
<td>All tenders will be evaluated in respect of the submitted method statement and any that do not fully comply with all the constraints contained in the Contract documents will not be considered.</td>
</tr>
<tr>
<td>Design Proposal</td>
<td>Any tenderer submitting design proposals which do not fully comply with the constraints contained in the Contract Documents will not be considered.</td>
</tr>
<tr>
<td>Declaration of Performance</td>
<td>Any tenderer failing to submit the declaration of performance for the surface dressing will not be considered.</td>
</tr>
<tr>
<td>Traffic Management</td>
<td>Any tenderer failing to submit his proposals for traffic control and aftercare as detailed in contract specific Appendices 7/3 and 1/17, or not fully complying with all the constraints contained in the Contract Documents, will not be considered.</td>
</tr>
<tr>
<td>Contingency Plans</td>
<td>Any tenderer failing to submit his details of contingency plans as detailed in contract specific Appendix 7/3 will not be considered.</td>
</tr>
<tr>
<td>Previous Applications</td>
<td>Any tenderer failing to submit the details of previous applications, personnel, technical and managerial multiple layer dressing expertise as detailed in contract specific Appendix 7/3 will not be considered.</td>
</tr>
</tbody>
</table>
(05/18) It is expected that the design would normally be carried out based on Road Note 39 although alternative, documented, design procedures may be used provided they take into account the particular requirements of the site. Contractors should recognise the need for best practice as set out in Road Note 39, BSI PD 6689 and in Road Surface Treatment Association (RSTA) documents. Durability characteristics are required in order to assist in the assessment of tenders on the expected design life of the surface dressing on a value for money basis; it is often the case that more expensive designs last longer. The end of the design life is when the dressing no longer provides the surface properties required at the site in question. Further guidance on the design life of Surface Treatments including Surface Dressing has been published by RSTA and ADEPT.

(05/18) The responsibility for the provision of information upon which to base the design should be set out in the contract, but it is expected that the compiler would provide the traffic data, the classification of the site in accordance with HD 36 (DMRB 7.5.1), the minimum requirements for aggregate and binder properties, and records of road surface hardness measurements carried out in accordance with Road Note 39. The compiler should set out any limitations on the availability of a site in contract specific Appendix 1/13. These limitations could include requirements to avoid the site at rush hours, on market days or for particular events already planned at the time of writing the contract. There are problems with hardness measurements in that they need a lane closure and are best carried out when the road temperature is above 15°C, (Road Note 39), therefore it may be necessary for the Overseeing Organisation to carry out measurements during the preceding summer. When the Contractor makes his site visit for the purposes of tendering he should make a visual assessment of the road hardness and traffic category and bring any obvious anomalies about the site to the attention of the Overseeing Organisation.

(05/18) For the purposes of the contract, monitoring will stop at the end of the guarantee period, or for novel materials, after one third of the stated estimated design life, but in order to check the proposed design life against the actual achieved life, monitoring should continue for the whole life of the dressing. On heavily trafficked roads this can most conveniently be done by means of the macrotexture output from TRACS surveys, which are currently carried out on all trunk roads every 2 years and SCRIM surveys, which are currently carried out every 3 years. For other roads volumetric patch tests or use of the Mini Texture Meter or other device calibrated against volumetric patch values as Volumetric Patch Equivalent values, may be more convenient.

(05/18) The Vialit pendulum test should be carried out using BS EN 13588. The minimum binder cohesion at peak measured using the Vialit Pendulum for four grades of binder are given in Table NG 9/13. Guidance as to the choice of binder is given in HD 37 (DMRB 7.5.2). The range of temperature for premium and intermediate binders for a value of 1.0 J/cm² for heavily trafficked roads or highly stressed sites, provides another parameter for evaluation of the modification together with peak value (see HD 37 (DMRB 7.5.2).

TABLE NG 9/13: (05/18) Vialit Pendulum Test

<table>
<thead>
<tr>
<th>Binder Grade</th>
<th>Minimum Peak Binder Cohesion J/cm²</th>
<th>Class in BS EN 13808</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super-premium</td>
<td>1.4</td>
<td>6</td>
</tr>
<tr>
<td>Premium</td>
<td>1.2</td>
<td>5</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.0</td>
<td>4</td>
</tr>
<tr>
<td>Conventional</td>
<td>0.7*</td>
<td>3*</td>
</tr>
</tbody>
</table>

Note: The cohesion test has a significant reproducibility. This has been allowed for when setting these minimum levels and the average value of the peak cohesion for polymer modified binders is likely to be at least 0.3 J/cm² above the minima given in the Table.

* For conventional binders where 0.7 is not consistently achieved, 0.5 over a minimum temperature range of 15°C has been found to provide satisfactory performance.

(05/18) Penetration, softening point, Fraass Brittle point, toughness, tenacity, and other viscosity measurements are not in themselves sufficient as contract compliance tests, although they may be useful as quick or low cost Quality Assurance tests to check consistency from load to load of the binder. The Contractor’s Design Proposal should provide a declaration of performance for the binder giving at least the information specified.
13 (05/18) The binder sprayer should be checked for accuracy of transverse distribution using BS EN 12272-1. This assesses the ability of the spraybar in real working conditions and may be carried out quickly using the correct binder. The Depot Tray test to BS 1707 averages the rate over 60 seconds in a static condition and therefore does not simulate site conditions caused by varying spraybar height, wind effects and pump or pressure surging. The performance of the binder sprayer is classified in accordance with the value of the coefficient of variation (C\textsubscript{v}) for the regularity of transverse distribution. The category required for the sprayer, to be specified in contract specific Appendix 7/3, should be selected from Table NG 9/14.

TABLE NG 9/14: (05/18) Accuracy of Binder Sprayer

<table>
<thead>
<tr>
<th>Site</th>
<th>Coefficient of Variation C\textsubscript{v}</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorways and Dual Carriageways</td>
<td>< 10%</td>
<td>2*</td>
</tr>
<tr>
<td>Single Carriageways</td>
<td>< 10%</td>
<td>2</td>
</tr>
<tr>
<td>Lightly Trafficked Single Carriageways</td>
<td>< 15%</td>
<td>1</td>
</tr>
</tbody>
</table>

(05/18) * The C\textsubscript{v} and category is appropriate when carpet tiles 100 mm wide and at least 200 mm long are used for the test, where the surface is very even, on dual carriageways and motorways there is a case for specifying category 3. Where 50 mm wide trays are used each two adjacent trays should be averaged before calculating the Coefficient of variation (C\textsubscript{v}).

14 (05/18) The compiler should specify the minimum PSV required for a particular site together with the maximum AAV. Guidance on the levels to specify is given in HD 36 (DMRB 7.5.1); over specification should be avoided in order to conserve scarce resources.

15 (05/18) The chipping spreader should be checked for accuracy of transverse distribution using the stated method. With multi-layered surface dressings it is very important to obtain the correct rate of spread of the larger chipping as under or over-chipping will reduce the quality of the dressing and may result in it failing to perform as a multi-layered system. Particular attention should be paid to the rate of spread in the vicinity of the overlaps in the chipping spreader mechanism as the performance, particularly of worn spreaders, can be significantly different in these areas from the rest of the spreader. The performance of the chipping spreader is classified in accordance with the value of the coefficient of variation (C\textsubscript{v}) for the regularity of transverse distribution. The category required for the spreader to be specified in contract specific Appendix 7/3 should be selected from Table NG 9/15. The rate of spread for secondary chippings is less important and an excess is usually beneficial so that spreading with two tail-board gritters in echelon is acceptable.

TABLE NG 9/15: (05/18) Accuracy of Chipping Spreader

<table>
<thead>
<tr>
<th>Chipping Type</th>
<th>Coefficient of Variation C\textsubscript{v}</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary chippings in multi-layer Surface Dressing</td>
<td>< 10%</td>
<td>2</td>
</tr>
<tr>
<td>All other chippings</td>
<td>< 15%</td>
<td>1</td>
</tr>
</tbody>
</table>

16 (05/18) Repairs to the existing road, in preparation for Surface Dressing, (for example, patching) should be carried out well in advance of the works. They should be carried out in such a manner that the hardness and macrotexture of the remedial work is sufficiently similar to the rest of the road to avoid problems of variable appearance and behaviour in the completed dressing for at least the duration of the maintenance period; for example, patching using close textured bitumen macadam should be carried out in the previous summer otherwise it may absorb bitumen into the voids and chipping loss may ensue. The existing road variability and surface characteristics have a bearing on the achievable levels of performance that may be specified; further information is available in HD 37 (DMRB 7.5.2). If the existing surface is hot rolled asphalt then the patches will have to be laid with hot rolled asphalt and preferably sufficiently far in advance of the works for the binder to wear off the surface...
otherwise there will be excess binder in that area and fatting may occur. Thin surface course systems should be repaired with stone mastic asphalt of similar consistency and highly textured variable substrata should be sealed with a pad coat. Patches should not have a horizontal sealing strip applied as this will show through the dressing very rapidly and has been known to initiate fatting failure. Binder-rich soft materials to seal cracks similar to stress absorbing membrane interlayers (SAMIs) should not be used especially longitudinally in the wheel tracks, as the Surface Dressing will fat up.

17 (05/18) Cleanliness of the existing road surface is extremely important. The binder will adhere only to the top layer of the material on which it is sprayed and if this is mud or dust then the Surface Dressing will fail rapidly, lacking bond with the underlying structure. It may be found necessary in some circumstances to use high pressure washing to remove strongly adherent material. The masking of street furniture should be carried out very carefully as the interface between the furniture and the surrounding surface should be sprayed in order to exclude water from the road structure, but any cover must not be rendered immovable.

18 (05/18) Traffic safety and management. The mode of operation of Surface Dressing contracts can necessitate the adoption of techniques requiring additional equipment over and above that normally required by static works. For example, where traffic lights are required as part of the traffic management scheme, some sites may require the provision of additional sets of traffic lights over and above the minimum necessary in order to permit work to progress with a minimum of interruption and disruption to road users.

19 (05/18) General weather limitations should be covered by the Contractor’s Quality Plan. Any site specific weather limitations should be specified under ‘Special restrictions’ in contract specific Appendix 7/3. Further guidance may be obtained from HD 37 (DMRB 7.5.2).

20 (05/18) In order to ensure that only the binder is overlapped on transverse joints the chipping application should stop short of the end of the binder film wherever possible. When spraying from a completed section some hand canning and masking of the end is necessary in order to abut the joint without forming a ridge.

21 (05/18) Longitudinal joints should have slightly overlapped binder films obtained by leaving at least a 100 mm wide wet edge. Care should be taken to ensure that double chipping does not take place as this will form a ridge. As the binder overlap is generally in a lightly trafficked location the additional thickness of binder film is unlikely to be a problem. Quartering (spraying of a part bar) should be avoided wherever possible, but may be necessary at tapers and other similar locations, sufficient overlap (up to 300 mm) should be implemented in order to ensure at a minimum the full rate of spread of binder at all points.

22 (05/18) The frequency of testing for rates and accuracy of spread of binder and chippings should be stated in contract specific Appendix 1/5. The rate of testing should be reduced once the Contractor has demonstrated his ability to consistently meet the requirements. The more consistent a contractor is in his work the lower the rate of testing that may be employed; a minimum rate of 1 test per day on motorways and trunk roads might be attained if the contract is large enough. The Overseeing Organisation will carry out testing at audit frequency, typically at about 10% of the specified frequency for the Contractor. If the results from audit testing are significantly different from those of the Contractor, for example, by more than the reproducibility of the tests, then the Overseeing Organisation and the Contractor should work together to determine the source of difference. For roads other than trunk roads or motorways the frequency of testing detailed in the Quality Plan and the Sector Scheme for the Supply and Application of Surface Treatments to Road Surfaces should be used.

23 (05/18) The permitted tolerance on the design rate of spread of binder is dependent on the site and is classified in Table NG 9/16. The category or categories appropriate to the site should be specified in contract specific Appendix 7/3. These categories have been taken from BS EN 12272-1 for surface dressing.

TABLE NG 9/16: (05/18) Tolerance on Design Rate of Spread of Binder

<table>
<thead>
<tr>
<th>Site</th>
<th>Tolerance</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Stressed Sites, Motorways and Dual Carriageways</td>
<td>± 5%</td>
<td>2</td>
</tr>
<tr>
<td>Single Carriageways</td>
<td>± 10%</td>
<td>1</td>
</tr>
</tbody>
</table>
The permitted tolerance on the design rate of spread of chippings is dependent on the site and is classified in Table NG 9/17. The category appropriate to the site should be specified in contract specific Appendix 7/3. These levels have been taken from BS EN 12272-1 for surface dressing.

TABLE NG 9/17: (05/18) Tolerance on Design Rate of Spread of Chippings

<table>
<thead>
<tr>
<th>Site</th>
<th>Tolerance</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Stressed Sites, Motorways and Dual Carriageways</td>
<td>±5%</td>
<td>3</td>
</tr>
<tr>
<td>All Other Sites</td>
<td>±10%</td>
<td>2</td>
</tr>
<tr>
<td>Lightly Trafficked Single Carriageways (up to 100 cv/l/d)</td>
<td>±15%</td>
<td>1</td>
</tr>
</tbody>
</table>

The aim of rolling should be to orientate the chippings and place them in contact with the binder rather than provide compaction. There is some consensus that vibration using a rubber coated vibratory steel-tyred roller assists in the break of emulsion binders and a re-roll can help where the ‘cheesy’ stage of an emulsion is prolonged. The ability of the rollers to spray water on to the drums or tyres should be checked before commencement of any work. Although water may not be needed all the time, when it is, it is needed urgently. Heavy steel-wheeled rollers (12 tonnes) tend to crush chippings and their use should not be permitted.

Traffic control immediately after Surface Dressing is most crucial in the production of good quality Surface Dressing. On high speed roads the best way of doing this is to introduce convoy vehicles into the traffic stream in order to keep speeds low. The deployment of 10 mph or 20 mph signs, when permitted, is extremely useful and warn the road user. If possible cones should be used to vary the lane position so that as much of the dressing as possible is subjected to slow speed traffic. The lane should be suction swept prior to removal of the convoying vehicles from the traffic stream, care being taken not to remove chippings that would otherwise become part of the mosaic. With multi-layered surface dressing it may not be necessary to sweep initially unless there are windrows which should be removed. If the work has been carried out correctly there will be no loose large chippings. Provided there are no loose large sized chippings it may be useful to gradually increase the speed of the convoying vehicles to disperse excess small chippings to the side of the lane for subsequent removal.

On motorways and heavily trafficked dual carriageways it is not normally possible to convoy traffic through the works at a speed of 20 mph which would normally be done on other roads to consolidate the Surface Dressing prior to final sweeping and opening to unrestricted traffic. As part of the normal traffic management for motorway work there is generally a mandatory 50 mph speed restriction in place for the duration of the work. Therefore, instead of the normal slow speed trafficking and convoying as part of the aftercare, the Surface Dressing should be designed to be opened to 50 mph traffic after completion of initial suction sweeping. Suitable designs include double and multi-layered dressings using polymer modified emulsion binders and racked-in dressings using polymer modified cutback binders with lightly coated chippings for the primary layer. There should follow a number of days of trafficking at the restricted speed limit (generally 50 mph) with traffic management being organised in such a manner that all lanes have at least 48 hours of speed limited trafficking. A minimum of 72 hours of restricted speed limit control after opening the whole carriageway to traffic should be included in the works programme. This period may be extended as stated by the Overseeing Organisation in contract specific Appendix 7/3 or as detailed by the Surface Dressing Contractor in his Design Proposal. The period will not normally be extended except when the traffic on the section of motorway is unusually light or the work is to be carried out late season, for example in August. The Surface Dressing Contractor will determine the need for a longer period based on his experience with a particular process that is proposed. All loose chippings should be removed from any traffickable part of the carriageway or hard shoulder prior to removal of the speed restriction.

It is essential that the dressing is monitored for some time after opening to traffic, particularly in hot weather when using cutback binders as at high temperatures the binder cohesion is low. When using emulsions, humid or cool weather, results in a similar problem as the binder takes longer to gain cohesion. These conditions result in lower initial resistance to traffic forces and the mosaic may be destroyed. The Contractor should be prepared for these eventualities and have on site, ready to use, a suitable ‘dust’, if this is required, and be prepared to re-impose traffic control. The ideal ‘dust’ is light coloured, absorbent and about 4 mm to 1 mm in size. Oolitic
limestone and blastfurnace slag are particularly good although other materials available locally may have to be used.

29 (05/18) Macrotexture is measured in the nearside (inside) wheel track where the lane width and traffic are sufficient for this to be identified; for low traffic category sites the track carrying the most traffic (wear) is tested, this may be the outside wheel track for narrow lanes where tyre paths in both directions overlap. High-speed sensor measurements should be used for measuring macrotexture depth on trunk roads and motorways because of the amount of macrotexture depth measurement to be undertaken. This form of measurement avoids the need for additional lane closures, which the use of volumetric patch technique or the Mini Texture Meter would require. Other methods may be used, but the results should be reported as Glass Spheres Patch Equivalent values. Lightly trafficked roads should be assessed for cleanliness and cleaned if necessary before measurements are made. This would not normally be necessary on roads carrying heavy or fast traffic. The use of high speed measurements also enables long term monitoring as part of the routine TRACS surveys. The macrotexture depth for high speed roads at the end of the guarantee period would normally be specified at 1.5 mm measured by the volumetric patch technique. Depending on traffic levels, lower macrotextures at the end of the guarantee period may be specified in contract specific Appendix 7/3 for lower speed roads and for certain Surface Dressing product types as shown in Tables NG 9/18 and NG 9/19. The macrotexture requirements are reduced for double and multiple-layered surface dressings, which are more durable especially when the binder is modified, as the rate of embedment (loss of macrotexture with time) is lower. These dressings have lower initial macrotexture and a greater number of points of contact to tyres and they are used to reduce tyre noise emission in areas where this is important such as urban roads or trunk roads and motorways close to a conurbation. Macrotexture levels specified should be achievable depending on the variability and surface characteristics of the existing road and traffic category; guidance is available in HD 37 (DMRB 7.5.2).

TABLE NG 9/18: (05/18) Minimum Glass Spheres Patch Macrotexture Depth Requirements (or Glass Patch Equivalent) in the Nearside Wheel Track for Single and Racked-in Surface Dressings at the End of the Guarantee Period

<table>
<thead>
<tr>
<th>Traffic cv/lane/day</th>
<th>Speed limit 50 mph or higher Glass Spheres Patch Macrotexture (mm)</th>
<th>Speed limit 40 mph or lower Glass Spheres Patch Macrotexture (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than 2000</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>250 to 2000</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>50 to 250</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Less than 50</td>
<td>1.0</td>
<td>0.8</td>
</tr>
</tbody>
</table>

TABLE NG 9/19: (05/18) Minimum Glass Spheres Patch Macrotexture Depth Requirements (or Glass Spheres Patch Equivalent) in the Nearside and Offside Wheel Tracks for Double and Multiple-layered Surface Dressings at the End of the Guarantee Period

<table>
<thead>
<tr>
<th>Traffic cv/lane/day</th>
<th>Any Speed Limit Glass Spheres Patch Macrotexture (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 3250</td>
<td>1.2</td>
</tr>
<tr>
<td>250 to 3250</td>
<td>1.0</td>
</tr>
<tr>
<td>Less than 250</td>
<td>0.8</td>
</tr>
</tbody>
</table>

The decrease in macrotexture between 12 and 24 months is a guide to the life of the dressing, the lower the value the longer the life, unless other failure mechanisms intervene. A maximum reduction in macrotexture of 40% should be specified in contract specific Appendix 7/3. Double and multiple-layered dressings using modified binders normally show reduced loss of macrotexture with time. An increase in macrotexture depth over time indicates that the surface is losing chippings.
It is anticipated that because Surface Dressing defects are usually obvious the need for a formal assessment procedure using the quantitative method in BS EN 12272-2 will be rare. All defects are measured in 100 m sections. The visual assessment of fatting up, tracking and bleeding P_1, expressed as a percentage of area, is categorised in Table NG 9/20. The category appropriate to the site should be specified in contract specific Appendix 7/3 provided that the levels are achievable depending on the traffic category and existing road surface characteristics, see HD 37 (DMRB 7.5.2).

TABLE NG 9/20: (05/18) Defect Category: Fatting Up, Tracking and Bleeding

<table>
<thead>
<tr>
<th>Site</th>
<th>Fatting Up, Tracking and Bleeding: % Area P_1</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorways</td>
<td>≤ 0.5</td>
<td>3</td>
</tr>
<tr>
<td>Dual and stressed Single Carriageways</td>
<td>≤ 0.5</td>
<td>3</td>
</tr>
<tr>
<td>Single Carriageways</td>
<td>≤ 1.0</td>
<td>2</td>
</tr>
<tr>
<td>Lightly Trafficked Single Carriageways</td>
<td>≤ 2.5</td>
<td>1</td>
</tr>
</tbody>
</table>

The visual assessment of scabbing and tearing, (P_2), expressed as a percentage of area using BS EN 12272-2, is categorised in Table NG 9/21. The category appropriate to the site should be specified in contract specific Appendix 7/3.

TABLE NG 9/21: (05/18) Defect Category: Scabbing and Tearing

<table>
<thead>
<tr>
<th>Site</th>
<th>% Area Affected P_2</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorways</td>
<td>≤ 0.2</td>
<td>3</td>
</tr>
<tr>
<td>Dual and stressed Single Carriageways</td>
<td>≤ 0.5</td>
<td>2</td>
</tr>
<tr>
<td>Single Carriageways</td>
<td>≤ 0.5</td>
<td>2</td>
</tr>
<tr>
<td>Lightly Trafficked Single Carriageways</td>
<td>≤ 1.0</td>
<td>1</td>
</tr>
</tbody>
</table>

The visual assessment of fretting, (P_3), expressed as percentage chipping loss using BS EN 12272-2, is categorised in Table NG 9/22. The category appropriate to the site should be specified in contract specific Appendix 7/3.

TABLE NG 9/22: (05/18) Defect Category: Fretting

<table>
<thead>
<tr>
<th>Site</th>
<th>% Chipping Loss P_3</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorways</td>
<td>≤ 3.0</td>
<td>3</td>
</tr>
<tr>
<td>Dual and stressed Single Carriageways</td>
<td>≤ 3.0</td>
<td>3</td>
</tr>
<tr>
<td>Single Carriageways</td>
<td>≤ 6.0</td>
<td>2</td>
</tr>
<tr>
<td>Lightly Trafficked Single Carriageways and footways</td>
<td>≤ 10.0</td>
<td>1</td>
</tr>
</tbody>
</table>

The visual assessment of streaking, (P_4), expressed as length of streaking using BS EN 12272-2, is categorised in Table NG 9/23. The category appropriate to the site should be specified in contract specific Appendix 7/3.
TABLE NG 9/23: (05/18) Defect Category: Streaking

<table>
<thead>
<tr>
<th>Site</th>
<th>Length of Streaking m P_4</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorways</td>
<td>≤ 10</td>
<td>3</td>
</tr>
<tr>
<td>Dual and stressed Single Carriageways</td>
<td>≤ 10</td>
<td>3</td>
</tr>
<tr>
<td>Single Carriageways</td>
<td>≤ 30</td>
<td>2</td>
</tr>
<tr>
<td>Lightly Trafficked Single Carriageways and footways</td>
<td>≤ 90</td>
<td>1</td>
</tr>
</tbody>
</table>

31 (05/18) The guarantee period stated in the specification should be clearly stated as applying to the Surface Dressing. For trunk roads and motorways this period should normally be two years, for other roads such as lightly trafficked single carriageways the guarantee period may be one year. An appropriate Special Requirement should be included in the Conditions of Contract drawing particular attention to the guarantee period.

NG 924 (05/18) High Friction Surfaces

1 (05/18) Experience has shown these surfacings to be highly effective in reducing traffic accidents on sites with high traffic density and skidding risk. Typical sites are the approaches to signal controlled junctions, to roundabouts and pedestrian crossings subject to a heavy flow of vehicles.

2 (05/18) These surfacings can have a relatively short life compared with other road surfacing materials and to avoid excessive maintenance and replacement the use of alternatives should be considered, if feasible, such as improved road signs and markings, improved street lighting etc., providing the minimum PSV required for the site in Table 3.1 in HD 36 (DMRB 7.5.1) is complied with.

3 (05/18) High friction surface treatments are available based on a variety of binders, both thermosetting and thermoplastic. Depending on the type of binder, high PSV aggregates, most commonly calcined bauxite, are either broadcast over a pre-applied binder film or pre-blended with binder and the mixture applied. On heavily trafficked sites, the durability of different systems can vary greatly. To avoid discriminating against those products that are suitable only for moderately or lightly trafficked sites, and also to encourage innovation, the HAPAS certification scheme to assess high friction surfacings has been set up. High friction surfacing systems are classified during the assessment into three types, as shown in Table NG 9/24. The type or types permitted appropriate to the traffic level on a site should be specified in contract specific Appendix 7/1, Types 1, 2 & 3 for very lightly trafficked sites, Types 1 & 2 for moderately trafficked sites and Type 1 for heavily trafficked sites. Equivalent product acceptance schemes should be considered where they comply with sub-Clauses 104.15 and 104.16.

4 (05/18) Each Type classification has an expected service life of between 5 to 10 years at the maximum traffic levels shown in Table NG 9/24. A Type 1 system used on a moderately or lightly trafficked site can offer a much extended life, twenty years is not unknown. Conversely a Type 3 system used on a heavily trafficked site will have a much reduced working life. Further guidance on the Design Life of Surface Treatments including High Friction Surfacings has been published by RSTA and ADEPT.

5 (05/18) High friction surfacing should be applied strictly in accordance with the current system method statement provided in accordance with the HAPAS or equivalent product acceptance scheme certificate. Systems should only be installed on surfaces which are cured and sound (not cracked or rutted), and free from dust, oil, excess bitumen or other contaminants that may cause lack of adhesion. Surfaces not suitable for treatment include slurry surfacing incorporating microsurfacing, fatted and multilayer surface dressings and surface dressings over soft or unsound bases. Performance on concrete may not be as good as on bituminous surfacings and the suitability of a system should be checked by reference to the Certificate.

6 (05/18) Some high friction surfacing systems have been successfully applied to new surfaces prior to trafficking, however it is recommended that a period of time be agreed between the Overseeing Organisation and the installer for the substrate to be trafficked to allow full embedment and loss of volatiles from the asphalt surface prior to
installation of the system. Further guidance on when to treat freshly laid asphalt using different systems is provided in the RSTA Code of Practice for High Friction Surfacing.

7 (05/18) On occasion cracking which extends into the surface course can be induced by the application of high friction surfacing. The risk of this occurring is much greater when the surface course is newly applied and untrafficked. Provided the high friction surfacing is well bonded to the substrate and with the agreement of the Overseeing Organisation, the cracking may be sealed using a suitable epoxy or similar resin and the high friction surfacing made good. Any cracks in excess of 0.5 mm are the liability of the Contractor under the terms of the guarantee required in sub-Clause 924.7.

8 (05/18) The minimum polished stone value of the aggregate used in high friction surfacing systems, determined in accordance with BS EN 1097-8, to be specified in contract specific Appendix 7/1 can be obtained from HD 36 (DMRB 7.5.1). The only aggregate type which consistently delivers 70+ psv is calcined bauxite. Further guidance on Aggregate Specification for High Friction Surfacings is contained within the Code of Practice for High Friction Surfacing. Currently suppliers offer a two year warranty for their products.

TABLE NG 9/24: (05/18) High Friction Surfaces: Area of Application by Type Classification*

<table>
<thead>
<tr>
<th>Site Category (As defined in HD 36)</th>
<th>Site Definition</th>
<th>Maximum Traffic Levels (Commercial Vehicle per lane per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type 1</td>
</tr>
<tr>
<td>F</td>
<td>Approaches to and across major junctions (all limbs).</td>
<td>3500</td>
</tr>
<tr>
<td>G1</td>
<td>Gradient 5% to 10%, longer than 50 m.</td>
<td>2500</td>
</tr>
<tr>
<td>H1</td>
<td>Bend (not subject to 40 mph or lower speed limit) radius 100 – 250 m.</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Roundabout.</td>
<td>2500</td>
</tr>
<tr>
<td>J/K</td>
<td>Approach to roundabout, traffic signals, pedestrian crossing, railway level crossing etc.</td>
<td>2500</td>
</tr>
</tbody>
</table>

*Each type classification has an expected service life of between 5 and 10 years at the maximum traffic levels shown.

NG 925 (05/18) Sampling and Testing of Bituminous Mixtures

1 (05/18) The BS EN 13108 standards for bituminous mixtures include detailed requirements for mixture validation testing and consistency and conformity testing in Part 20: Type Testing and Part 21: Factory Production Control. This includes both tests for performance properties and compositional analysis at stated frequencies. The regulations governing CE marking make this testing a legal obligation of producers.

2 (05/18) Requirements for contract compliance testing should be identified by the compiler in contract specific Appendices 1/5 and 1/6.

3 (05/18) There may be certain circumstances where it would be appropriate for the Overseeing Organisation to undertake audit testing of bituminous mixtures. Any such testing and the associated sampling would be contract compliance testing and should be carried out in accordance with the requirements of the relevant parts of BS EN 13108, BS EN 12697 and BS 594987, using laboratories with the appropriate UKAS accreditation. Typical testing requirements are given in Table NG1/1.
NG 926 (05/18) In Situ Recycling: The Repave Process

1. (05/18) Guidance to the requirements specified in Clause 926 is contained in HD 31 (DMRB 7.4.1).

2. (05/18) The Repave process is an acceptable alternative to conventional resurfacing and can be used when weather conditions might prevent the use of conventional plant.

3. (05/18) Where the suitability of resurfacing works for the Repave process has been established, it should always be included as an option in tender documents or accepted as an alternative method by suitably equipped contractors following the award of a contract.

NG 929 (05/18) Dense Base and Binder Course Asphalt Concrete (Design Mixtures)

1. (05/18) The requirements in Clause 929 are now based on the European Asphalt Standard BS EN 13108-1 as detailed in BSI PD6691 and BS 594987. This has implications for the verification and validation of mixtures as described below.

2. (05/18) Clause 929 requires that designed dense base and binder course asphalt concrete mixtures meet the example requirements of BSI PD6691 Annex B. It is the responsibility of the asphalt producer to provide verification of these properties for each mixture in the form of a Type Test Report, in accordance with BS EN 13108-20. However, the producer is obliged to supply only the declaration of performance. This verification may have been carried out in accordance with a protocol given in BS 594987 Annex C. The protocol is based on the job mixture approval trial procedure specified previously in earlier editions of the Specification for Highway Works Clause 929, is technically equivalent and provides the same information.

3. (05/18) For most contracts, the information from the declaration of performance and CE Marking, should be sufficient to demonstrate that the mixture complies with the requirements of Clause 929. Under these circumstances, there is no need for an additional job mixture approval trial. On particularly large or critical projects, there may be a benefit in undertaking validation trials as part of the contract. Where required, these should be carried out as contract compliance testing and in accordance with BS 594987 Annex C and the requirement clearly indicated in contract specific Appendix 1/5. It should be noted that this additional testing should only be specified where there is reasonable justification to do so.

4. (05/18) If required, mix volumetrics can be monitored in the permanent works by determining void contents of cores compacted to refusal. This can provide an indication of deformation resistance. It should be noted however, that resistance to permanent deformation assessed by wheeltracking forms part of the Type Test Report. Monitoring void content at refusal will generally only be practicable only on larger contracts. If void content at refusal is to be monitored in the permanent works, this should be clearly indicated in Schedule 5 of Appendix 7/1.

5. (05/18) Verification of wheel tracking properties for each mixture will be recorded in the form of a Type Test Report in accordance with BS EN 13108-20. This verification may have been carried out in accordance with a protocol given in BS 594987 Annex D. Requirements appropriate to traffic and stress condition should be selected from Table NG 9/25.

6. (05/18) On particularly large or critical projects it may be appropriate to monitor resistance to permanent deformation in the permanent works. If required, this should be clearly indicated in Schedule 5 of Appendix 7/1 along with the site classification.

7. (05/18) When specifying resistance to permanent deformation information is given in the note to BSI PD6691 Table B4.

8. (05/18) Sub-clause 6 requires a minimum stiffness category of 1800 MPa for mixtures containing 40/60 grade binder and 2800 MPa for mixtures containing 30/45 grade binder. This is a minimum default value for these mixtures and should not be confused with the design stiffness. Further information on design stiffness can be found in HD 26 (DMRB 7.2.3). There is no protocol covering stiffness determination for dense base and binder asphalt concrete mixtures in BS 594987. Therefore, the following Type Testing protocol should be adopted:

‘Following the general protocol in BS 594987 Annex C, take an additional, three adjacent core pairs as described in C.3.2. Cut test specimens from these cores and determine stiffness in accordance with BS EN 12697-26
(ITSM method 20°C). The mean of the set of six values shall not be less than 1800 MPa for mixtures containing 40/60 grade binder and 2800 MPa for mixtures containing 30/45 grade binder.’

9 (05/18) Indirect density gauges, including nuclear density gauges, are specified for compaction control. It is important that these are calibrated across an appropriate range of densities as required by BS 594987. Such gauges have a penetration depth of approximately 80 mm and where layer thicknesses exceed this it is especially important that cores are visually inspected to ensure that they are uniformly compacted.

10 (05/18) A new requirement for density control close to joints has been introduced. Experience has shown that in-situ void content requirements in the wheeltracks are generally achieved. Therefore, the frequency of testing in this position has been reduced. Compaction at joints is considered to be a primary factor in affecting the durability of asphalt pavements and testing at this location has therefore been introduced. Contractors may need to adopt special measures of joint compaction in order to comply with this requirement.

11 (05/18) Where dense asphalt concrete base and binder course mixtures are to run on directly by normal highway traffic (due to traffic management requirements) it is recommended that they be surface dressed to prevent water ingress and to provide adequate skid resistance.
TABLE NG 9/25: (05/18) Classification of Sites by Traffic and Stress Condition for Resistance to Permanent Deformation of Dense Macadams to Clause 929

<table>
<thead>
<tr>
<th>Site Category</th>
<th>Site Definition</th>
<th>Traffic at Design life (Commercial vehicles per lane per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CLASS 1</td>
</tr>
<tr>
<td>I & II</td>
<td></td>
<td>Up to 250</td>
</tr>
<tr>
<td>A</td>
<td>Motorway (main line)</td>
<td>BSI PD6691 Table B4, Classification 1 (45°C)</td>
</tr>
<tr>
<td>B</td>
<td>Dual carriageway (all purpose) non-event sections</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Dual carriageway (all purpose) minor junctions</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Single carriageway non-event sections</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Single carriageway minor junctions</td>
<td></td>
</tr>
<tr>
<td>IA & IIA</td>
<td>As I and II, above, but with contraflow anticipated during summer months</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>F Approaches to and across major junctions (all limbs)</td>
<td>BSI PD6691 Table B4 Classification 2 (60°C)</td>
</tr>
<tr>
<td></td>
<td>G1 Gradient 3% to 10%, longer than 50 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L Roundabout</td>
<td></td>
</tr>
<tr>
<td>IIIA</td>
<td>As III, above, but with contraflow anticipated during summer months or in a south-facing cutting uphill</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>G2 Gradient steeper than 10%, longer than 50 m:</td>
<td></td>
</tr>
<tr>
<td>IVA</td>
<td>As IV, above, but with contraflow anticipated during summer months or in a south-facing cutting uphill</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>J/K Approach to roundabout, traffic signals, pedestrian crossings, railway level crossings and similar</td>
<td></td>
</tr>
</tbody>
</table>
NG 930 (05/18) EME2 Base and Binder Course Asphalt Concrete

1 (05/18) EME2 is a durable, deformation resistant, high performance base and binder course mixture, based on established French technology. The designation EME is from the French name Enrobé à Module Élevé (“High Modulus Coated”), and this acronym is being retained to differentiate these mixtures from the traditional UK High Modulus Base (HMB) materials which have significantly lower binder contents. Further information on the background to the material and the reasons for its introduction are explained in TRL report TRL 636.

2 (05/18) Two BS EN 13924 binder grades are permitted for use in EME2.

3 (05/18) The requirements in Clause 930 are based on BS EN 13108-1 as detailed in BSI PD6691 and BS 594987. This has implications for the verification and validation of mixtures as described below.

4 (05/18) Clause 930 requires that EME 2 base and binder course mixtures meet the detailed requirements of BSi PD6691 Annex B, in terms of constituents, composition, void content, water sensitivity, deformation resistance, stiffness modulus and fatigue properties. It is the responsibility of the asphalt producer to provide verification of these properties for each mixture in the form of a Type Test Report, in accordance with BS EN 13108-20. This verification will have been carried out by laboratory testing of some properties and validation of others by means of a site trial in accordance with a protocol given in BS 594987 Annex E. The protocol is based on the French ‘planche de vérification’ procedure and the job mixture approval trial procedure specified previously in earlier editions of the Specification for Highway Works Clause 929.

5 (05/18) Generally, the information from the declaration of performance and CE Marking, should be sufficient to demonstrate mixture compliance. As EME2 mixtures are still relatively new in the UK, it is considered appropriate to have site validation trials of volumetrics and stiffness carried out on each contract. These should be carried out in accordance with BS 594987 Annex E and the requirement to do so clearly indicated in Schedule 5 of contract specific Appendix 7/1.

6 (05/18) Binder content is a critical feature of EME2 mixtures. Therefore, a separate assessment of soluble binder content is included as a safeguard to ensure that binder contents are targeted close to the intended value and do not fall. In order to conform to this requirement, producers will need to maintain production close to mid point.

7 (05/18) EME2 is a binder rich material and should be more readily compacted to a low void content than traditional DBM, HDM and HMB materials. It is recommended that the trial strips constructed for the Type Test Report are used to evaluate and develop the Contractor’s method statement for compaction required by Clause 903.5.

8 (05/18) A new requirement for density control close to joints has been introduced. Contractors may need to adopt special measures of joint compaction in order to comply.

9 (05/18) EME2 is designed to be laid in thick lifts with small nominal size aggregate. Generally, it is good practice to lay bases in thicker lifts to minimise the number of layers and, hence, interfaces (giving due consideration to the maximum layer thicknesses given in BS 594987).

NG 937 (05/18) Stone Mastic Asphalt (SMA) Binder Course and Regulating Course

1 (05/18) The requirements in Clause 937 are based on BS EN 13108-5 as detailed in BSI PD6691 and BS 594987. This has implications for the verification and validation of mixtures as described below.

2 (05/18) Clause 937 requires the volumetric properties of SMA binder course and regulating mixtures to comply with BSI PD6691 Annex D. It is the responsibility of the asphalt producer to undertake verification of these properties for each mixture in the form of a Type Test Report, in accordance with BS EN 13108-20. This verification will have been carried out in accordance with a protocol given in BS 594987 Annex G. The protocol is based on the job mixture approval trial procedure specified previously in earlier editions of the Specification for Highway Works, is technically equivalent and provides the same information.

3 (05/18) The means to specify resistance to permanent deformation for SMA binder courses, previously given in Clause 952, are now contained within this Clause. Requirements appropriate to traffic and stress condition should be selected from Table NG 9/26. Verification of wheel tracking properties for each mixture will be recorded in the...
form of a Type Test Report in accordance with BS EN 13108-20. This verification will have been carried out in accordance with a protocol given in BS 594987 Annex G.

4 (05/18) On particularly large or critical projects it may be appropriate to monitor resistance to permanent deformation in the permanent works. If required, this should be clearly indicated in Schedule 5 of contract specific Appendix 7/1 along with the site classification.

5 (05/18) When specifying resistance to permanent deformation information is given in the note to BSI PD6691 Table B4.

NG 938 (05/18) Porous Asphalt Surface Course

1 (05/18) There has been little recent experience with Porous Asphalt in the UK and consequently no detailed requirements are given. Where porous asphalt is to be used, the specific mix details and performance requirements should be agreed with the Overseeing Organisation and established in terms of BS EN 13108-7.

NG 942 (05/18) Thin Surface Course Systems

(05/18) General

1 (05/18) Thin surface course systems are bituminous products with suitable properties to provide a surface course that is laid at a nominal depth between 20mm and 50 mm. This classification refers to hot-mixed asphalts in accordance with the BS EN 13108 family of materials, primarily Parts 1, 2 and 5. Acceptance requirements for the material relate to CE marked products with the required declaration of performance and valid CE marking. These cover only the manufacture of the product and not its installation. Additional in-situ performance requirements are also specified to cover aspects of the installation not covered by the declaration of performance.

2 (05/18) In order to demonstrate that the ‘as installed’ thin surface course system is able to meet the specification requirements a System Installation Performance Trial (SIPT) is required. This requires third party assessment of the installed system when constructed and over a period of two years. The SIPT is part of the evidence to be provided to determine system acceptability and is not to be part of the contact specific works.

3 (05/18) The Contractor is required to guarantee the system for five years. The performance of the system is required to be maintained throughout the five year period. The compiler should ensure that the contract conditions and documentation cover the guarantee requirements.

4 (05/18) CE marking by producers is certificated by Notified Bodies in accordance with the requirements of the relevant standard.

5 (05/18) The UK National Highways Sector Scheme 16 provides interpretation of BS EN ISO 9001 Quality Management Scheme requirements in relation to asphalt laying and registration is required for the laying of asphalt mixes in Clause 901.

6 (05/18) The SIPT is certificated by a Certification Body (CB) which is UKAS accredited for product approval to BS EN 45011. The SIPT will be observed by an inspection panel made up of, at least, a lead auditor and two other competent inspectors. The personnel are required to have appropriate technical knowledge and experience.

7 (05/18) Those supervising the works should ensure that they receive the declaration of performance and the SIPT documentation and check that they identify that the stated performance requirements are met by the chosen materials.

8 (05/18) Completion of the SIPT does not automatically mean that the particular system is suitable for every situation where a thin surface course system is required.

9 (05/18) New materials that have not undergone a SIPT may be considered for use, these would need to be considered using the departures from standard process. Such materials would need to be monitored for at least two years and be in the process of being progressed for a completed SIPT.
Full details of the monitoring arrangements and details of intervention contingency plans must be included in the departures from standards submission. The surface macrotexture performance guarantee period should be extended to three years in these circumstances.

10 (05/18) A distinction should be drawn between limitations set for the properties of thin surface course systems recorded for the SIPT and requirements placed on the work being carried out. The former are based on results from past works and identify what the system achieved for the trial, whilst the latter identify what the system is required to achieve in this case.

(05/18) **Design, manufacture, transportation and installation – general**

11 (05/18) The compiler should state the site requirements for each section of road and the anticipated commercial traffic flows expected at the site over the guarantee period in contract specific Appendix 7/1. The Contractor should also be required to inspect the Site where the material will be laid.

12 (05/18) The design, manufacture, transportation, placement and compaction of the materials is the Contractor’s responsibility, within the constraints applicable to the chosen system. The decisions regarding weather conditions and their suitability for laying and compaction of the chosen system will lie with the Contractor.

(05/18) **Layer Thickness Design**

13 (05/18) The compiler should state the design layer thickness and nominal size in contract specific Appendix 7/1.

14 (05/18) The minimum and maximum design thicknesses at which the thin surface course system shall be laid, will be selected from Table 9/1. Possible reasons for specifying a minimum or maximum thickness may be:

- to maintain continuity with the material to be planed out; or,
- to avoid premature cooling in adverse cold weather conditions.

Possible reasons for specifying a maximum thickness may be:

- to maintain continuity with the material to be planed out; or
- to retain sufficient headroom under over-bridges; or
- to avoid overloading under-bridges; or
- to minimise the need to raise kerbs, safety barriers and/or ironwork.

15 (05/18) Premature cooling in adverse cold weather could be overcome either by use of a thicker surfacing or by pre-heating of the substrate.

16 (05/18) Retention of thin layers of existing material after planing should be avoided. There is a significant risk of such thin layers failing prematurely.

17 (05/18) The nominal thickness at which to lay the material has to be selected by the Contractor with due allowance for the constructional tolerance. If both a minimum and a maximum thickness are specified, the difference between the maximum and minimum thicknesses should be at least 20% of their average. The System Installation Method Statement should state the absolute installed minimum thickness at any point.

18 (05/18) The range of nominal installation depth at which a thin surface course system can be laid will be specific to the system. If systems are specified to be laid at nominal depths other than those identified, then the desired performance may not be achieved.

(05/18) **Design – Mixture Selection**

19 (05/18) The compiler should state whether each section of road is only suitable for thin surface course systems with an upper (D) aggregate size of 10mm or less in contract specific Appendix 7/1.

20 (05/18) The minimum polished stone value of the coarse aggregate should be selected from Table 3.1 in HD 36 (DMRB 7.5.1). Separate maximum aggregate abrasion values should be given for thin surface course systems using the appropriate information from Table 3.2 in HD 36 (DMRB 7.5.1).
(05/18) Design – Minimum Binder Content

21 (05/18) The minimum target binder contents identified in sub-Clause 942.8 Table 9/10 are deemed to be satisfactory for the range of binder and aggregate combinations typically produced in the UK. However, some combinations may require contents below this to be employed and should be carefully assessed in terms of the declaration of performance under the CE marking in relation to traffic levels, site stress categories and durability. These would need to be considered using the departures from standard process.

(05/18) Bond Coat

22 (05/18) It is essential to have an effective bond between a thin surface course system and the substrate. The purpose of a good bond is to ensure a monolithic structure, and prevent delamination and ingress of water.

23 (05/18) The thinner the surfacing, the greater the importance of an effective bond or tack coat to the performance of the thin surface course surfacing. Emulsion bond or tack coats sprayed as a separate operation ahead of the paver should be allowed to break completely (turn from brown to black) prior to surfacing.

24 (05/18) Polymer modified bond coats provide enhanced performance and should be specified for thin surfacings laid in high stress areas. Polymer modified bond coats can provide enhanced waterproofing to the lower pavement.

25 (05/18) Calibrated mechanised application should be used, however for inaccessible and / or small areas less then 250m² per shift or for narrow width surfacing i.e. less than 2 metres, it may be pragmatic and acceptable to use hand application.

26 (05/18) Attention should be paid to application rates in the Installation Method Statement.

27 (05/18) Application rates are found in BS594987.

(05/18) Overlaying Concrete

28 (05/18) Thin surface course systems are generally suitable for application to both old and new continuously reinforced concrete (CRCP) surfaces. When laying on concrete it is likely that a polymer modified bond coat will be required. Surfacing directly over jointed concrete is not generally recommended.

(05/18) Road Markings and Studs

29 (05/18) Contraflow and maintenance operations often require the application of temporary retroreflecting road studs. There are many proprietary types of stud available. Trials have indicated that many types of stud leave a sticky deposit of bituminous adhesive which clogs the surface voids and some studs also cause pluck-out of surface aggregate potentially leading to accelerated local deterioration of the pavement surfacing. Therefore, trials may need to be performed, at the outer edge of the hard shoulder, to ensure that the studs proposed for use can be removed from the surface without plucking-out surface aggregate or leaving an excessive deposit.

30 (05/18) Problems have also been reported regarding pre-formed road marking tapes loosing adhesion on negatively macrotextured surfaces in wet weather. Trials should be performed to select the best material.

(05/18) System Installation and Performance Trial (SIPT)

31 (05/18) The Certification Body SIPT inspection protocol should be developed in conjunction with the system provider and installer to enable appropriate assessment of the applicability of the SIPT for the system in order to satisfy the performance requirements. Assessments based on classification of defects to TRL674 have been shown to be acceptable and repeatable.

32 (05/18) Suitably qualified and experienced staff are necessary to ensure a consistent approach to the assessment of systems.
(05/18) **Initial Performance Requirements**

33 (05/18) Visual condition and untrafficked macrotexture can be specified for the purposes of SIPT and contractual compliance.

34 (05/18) Torque Bond assessment forms part of SIPT. If tested for contract compliance the performance level should meet the stated requirement.

(05/18) **Noise**

35 (05/18) Noise assessment is an additional optional declaration for a SIPT and should only be specified for sites of specific noise concern.

36 (05/18) Permitted Road/Tyre Noise Levels are given in Table 9/17. Levels 2 and 3 are necessary in noise-sensitive areas. In the interest of sustainability Level 3 should only be specified in very noise sensitive areas.

37 (05/18) Level 0 must not be specified at sites with existing noise barriers or earth bunds, where the latter have been specifically installed as a noise mitigation measure, and must not be used at locations that have been identified as an Important Area, either with or without First Priority Locations, in any of England’s Noise Action Plans published by DEFRA in March 2010.

38 (05/18) Road/Tyre Noise Levels are demonstrated by the optional value stated in the SIPT.

(05/18) **Deformation Resistance**

39 (05/18) The deformation resistance of thin surface course systems can be set in terms of wheel tracking level stated in the declaration of performance. For trunk roads including motorways, Level 3 is usually required (see also Table NG 9/26).

40 (05/18) If other levels of deformation resistance are required, this shall be specified in contract specific Appendix 7/1, with due consideration of the classifications given in Table NG 9/26.

41 (05/18) Deformation resistance data should be declared under the CE Marking declaration of performance. If cores are taken from a SIPT site for the purposes of checking deformation resistance of the installed material, the following protocol should be used.

42 (05/18) A minimum of six cores should be taken from a 100 m length of the SIPT at nominally even spacing along a diagonal line across the lane width in accordance with BS EN 12697-27: 2001. The cores need to be maintained at a temperature of 15°C ± 10°C during transportation to the test laboratory and for up to 96 hours once delivered. If wheel tracking testing has not commenced within 96 hours of coring, the specimens are to be placed in storage and maintained at a temperature 5°C ± 2°C until commencement of the testing procedure.

43 (05/18) The cores should be tested in accordance with BS EN 12697-22: 2003.

44 (05/18) The wheel-tracking levels of the thin surface course system are required to be Level 3 unless otherwise specified in contract specific Appendix 7/1. The required level should be stated in contract specific Appendix 7/1.
TABLE NG 9/26: Classification of Sites by Traffic and Stress Condition for Resistance to Permanent Deformation of Thin Surface Course Systems

<table>
<thead>
<tr>
<th>Site Category</th>
<th>Site Definition</th>
<th>Traffic at Design life (Commercial vehicles per lane per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I & II</td>
<td></td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>A</td>
<td>Motorway (main line)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Dual carriageway (all purpose) non-event sections</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Dual carriageway (all purpose) minor junctions</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Single carriageway non-event sections</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Single carriageway minor junctions</td>
<td></td>
</tr>
<tr>
<td>IA & IIA</td>
<td>As I and II, above, but with contraflow anticipated during summer months</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>F</td>
<td>Approaches to and across major junctions (all limbs)</td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>Gradient 3% to 10%, longer than 50 m</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Roundabout</td>
<td></td>
</tr>
<tr>
<td>IIIA</td>
<td>As III, above, but with contraflow anticipated during summer months or in a south-facing cutting uphill</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>G2</td>
<td>G2 Gradient steeper than 10%, longer than 50 m</td>
<td></td>
</tr>
<tr>
<td>IVA</td>
<td>As IV, above, but with contraflow anticipated during summer months or in a south-facing cutting uphill</td>
<td>0 2 3</td>
</tr>
<tr>
<td>J/K</td>
<td>Approach to roundabout, traffic signals, pedestrian crossings, railway level crossings and similar</td>
<td>0 2 3</td>
</tr>
</tbody>
</table>

(05/18) **Surface Macrotexture – Untrafficked**

45 (05/18) The minimum macrotexture depth required from hot rolled asphalt surfacing on high-speed trunk roads is generally 1.5 mm. With thin surface course systems, the choice of aggregate grading is the Contractor’s provided that the specified minimum surface macrotexture is achieved. To ensure that suitable macrotexture is provided and maintained on all roads, an initial macrotexture depth is specified in Clause 921 and a minimum requirement after two years has been included as part of the requirements for materials specified under Clause 942.

46 (05/18) Whilst measurement of macrotexture depth for compliance purposes is to be by the volumetric patch technique specified in BS EN 13036-1 only, Sensor Measured Texture Depth may be used as a screening procedure.
47 (05/18) Calibration trials and checks should be undertaken at the start and during the course of work to derive and confirm a relationship between the volumetric patch method and the Measured Texture Depth (SMTD).

48 (05/18) In the event of a dispute, or discrepancy between the two methods, only results obtained using the volumetric patch method will be considered for compliance purposes.

49 (05/18) Calibrations carried out on site are only applicable to that site and that surfacing.

50 (05/18) SMTD is numerically different from macrotexture measured by the volumetric patch technique. Volumetric patch macrotexture depth is a measurement of the average depth of hollows in the surface below general level of peaks. SMTD is the standard deviation of the sample height measurements.

(05/18) **Surface Macrotexture – After 2 Years**

51 (05/18) The performance levels of macrotexture depth for use on the strategic road network are given in Table 9/14 of Clause 942. Research has shown that hot applied thin surfacings with an upper (D) aggregate size of 10mm or 14mm maintain adequate high speed skid resistance with these levels of texture. For hot applied thin surfacings with an upper (D) aggregate size of 6mm, current techniques for assessing texture depth do not satisfactorily explain the skid resistance characteristics. These materials will require a supplementary assessment from a System Installation Performance Trial (SIPT) to provide evidence verifying adequate high-speed friction performance. Evidence must be provided that a SIPT has been carried out or a SIPT must be included in the proposal for the departure from standard.

NG 943 (05/18) Hot Rolled Asphalt Surface Course and Binder Course (Performance-Related Design Mixtures)

1 (05/18) This Clause is for the specification of hot rolled asphalt mixtures that have been designed to achieve controlled levels of resistance to permanent deformation (rutting) measured by the wheel tracking test. These mixtures are used as both surface course and binder course. They are particularly suitable as a regulating binder course under thin surfacings and as a binder course over bridge deck waterproofing. When used as surface course they must be chipped to provide a skid resistant surface.

2 (05/18) Using hot rolled asphalt surface course to this Clause will ensure a good level of resistance to permanent deformation within the surface course itself. Designers should be aware that significant rutting often occurs in the lower layers of the pavement and use of a performance designed surface course on an inadequate substrate will not protect against this. To provide adequate resistance to deformation, binder course and base designed in accordance with Clauses 929, 930 or 937 should be used, particularly in the top 100 mm of the pavement.

3 (05/18) In almost all cases, the use of a modified binder or binder modifier will be required in order to achieve the more onerous (Class 2) performance level. Since these are generally proprietary products, sub-Clause 5 requires the submission of information to the Overseeing Organisation for approval. If there is evidence of successful use of a modified binder/modifier in similar conditions, the presumption should be of approval.

4 (05/18) Verification of wheel tracking properties for each mixture will be recorded in the form of a Type Test Report in accordance with BS EN 13108-20. This verification will have been carried out in accordance with a protocol given in BS 594987 Annex F. This protocol is based on the job mixture approval trial procedure specified previously in earlier editions of Clause 943, is technically equivalent and provides the same information. Requirements appropriate to traffic and stress condition should be selected from Table NG 9/27 and included in contract specific Appendix 7/1.

5 (05/18) On particularly large or critical projects it may be appropriate to monitor resistance to permanent deformation in the permanent works. If required, this should be clearly indicated in Schedule 5 of contract specific Appendix 7/1 along with the site classification.

6 (05/18) When specifying resistance to permanent deformation, it will be necessary to take into account the transitional problems brought about by the change in the wheel tracking test method from BS 598 Part 110 to BS EN 12697-22, which uses similar equipment but different duration and loading. Further information is given in the note to BSI PD6691 Table B4. Work is in hand to establish criteria for the new method, but in the interim, requirements should be based on the BS 598 test but with data provided to show the values for the same mix tested to the BS EN 12697 method.
<table>
<thead>
<tr>
<th>Site Category</th>
<th>Site Definition</th>
<th>Traffic at Design life (Commercial vehicles per lane per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Class 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Up to 250</td>
</tr>
<tr>
<td>I & II</td>
<td>A Motorway (main line)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B Dual carriageway (all purpose) non-event sections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C Dual carriageway (all purpose) minor junctions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D Single carriageway non-event sections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E Single carriageway minor junctions</td>
<td></td>
</tr>
<tr>
<td>IA & IIA</td>
<td>As I and II, above, but with contraflow anticipated during summer months</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>F Approaches to and across major junctions (all limbs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1 Gradient 3% to 10%, longer than 50 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L Roundabout</td>
<td></td>
</tr>
<tr>
<td>IIIA</td>
<td>As III, above, but with contraflow anticipated during summer months or in a south-facing cutting uphill</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>G2 Gradient steeper than 10%, longer than 50 m:</td>
<td></td>
</tr>
<tr>
<td>IVA</td>
<td>As IV, above, but with contraflow anticipated during summer months or in a south-facing cutting uphill</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>J/K Approach to roundabout, traffic signals, pedestrian crossings, railway level crossings and similar</td>
<td></td>
</tr>
</tbody>
</table>

BSI PD6691 Table C.3, Classification 1 (45°C)

BSI PD6691 Table C.3, Classification 2 (60°C)
NG 945 (05/18) Weather Conditions for Laying of Bituminous Mixtures

1 (05/18) This Clause considers the laying conditions for bituminous mixtures in four separate categories as follows:

(i) General, applying to all bituminous mixtures.
(ii) Hot bituminous materials laid less than 50 mm thick.
(iii) Thin surface course systems.
(iv) Hot rolled asphalt with pre-coated chippings.

2 (05/18) The layer thickness has a major effect on the time available for compaction before the temperature drops below that at which the compaction is effective. Materials laid 50 mm or more thick, other than hot rolled asphalt with chippings, are likely to be tolerant of all but the most extreme conditions encountered in the UK.

3 (05/18) For materials at nominal thicknesses below 50 mm, air temperatures and, more particularly, wind speeds have a significant effect. For this situation, Sub-Clause 945.2 calls up Figure 9/1 which gives limiting conditions based on a minimum available compaction time of 8 min. Contractors will need to take account of this requirement in their compaction plans drawn up under sub-Clause 903.5.

4 (05/18) The weather conditions for the laying of thin surface course systems should be covered by the relevant installation HAPAS or equivalent product acceptance scheme certificate.

5 (05/18) Experience with hot rolled asphalt with pre-coated chippings led to the conclusion that the most appropriate combination for laying in UK weather conditions was a 35% stone content mixture laid at a nominal 50 mm thickness. Sub-Clause 945.4 gives specific limiting delivery, air temperature and wind speeds for this mixture and thickness only. These requirements for hot rolled asphalt with pre-coated chippings are based on a minimum available compaction time of 10 min from the time the material emerges from the paver. The use of modified binders in the hot rolled asphalt can change the relevant conditions.

6 (05/18) The additional constraints that can apply during winter and/or night-time laying that can affect the suitability of the weather conditions include:

(i) The temperature of bituminous mixtures drops rapidly during winter and night time laying operations. Extra care needs to be taken to ensure bituminous mixtures are adequately protected during transportation, off-loading, laying and rolling.

(ii) Cooling of bituminous layers, factors affecting cooling (wind chill, temperature) and time available for compaction (particularly during short night time lane possessions) needs to be borne in mind whilst planning for laying operations.

(iii) Human factors and health, welfare and safety implications should be given extra consideration for winter and night time working.

7 (05/18) The requirements of Clause 903 still apply, unless specifically amended by this Clause.

NG 948 (05/18) Ex Situ Cold Recycled Bound Material

1 (05/18) Materials to this Clause should be specified in contract specific Appendix 7/1. Either a specific material or materials should be stated or the Contractor permitted to choose a suitable material to meet the design thickness required. For roads designed for more than 20msa only QVE or QH materials should be used.

Examples of the types of materials that satisfy the material classifications QH, SH, QVE and SVE are provided below. It is realised that the combinations listed in Table NG 9/28 for each family are not exhaustive and alternatives to those shown can be considered (as indicated by ‘other’ in the table).
TABLE NG 9/28: (05/18) Examples of Material Families

<table>
<thead>
<tr>
<th>Quick Hydraulic (QH)</th>
<th>Slow Hydraulic (SH)</th>
<th>Quick Visco-elastic/hydraulic (QVE)</th>
<th>Slow Visco-elastic/hydraulic (SVE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• PC/PFA</td>
<td>• Lime/PFA</td>
<td>• Foam/PC</td>
<td>• Foam/Lime/PFA or</td>
</tr>
<tr>
<td>• PC/GGBS</td>
<td>• Lime/GGBS</td>
<td>• Foam/PC/PFA</td>
<td>• Foam/Lime/GGBS</td>
</tr>
<tr>
<td>• PC/PFA/GGBS</td>
<td>• Lime/PFA/GGBS</td>
<td>• Foam/PC/GGBS</td>
<td>• Foam/Lime or</td>
</tr>
<tr>
<td>• PC/’other’</td>
<td>• Lime/GGBS</td>
<td>• Foam/PC/’other’</td>
<td>• Foam/GGBS or</td>
</tr>
<tr>
<td></td>
<td>• Lime/PFA/GGBS</td>
<td>• Emulsion/PC</td>
<td>• Foam/’other’</td>
</tr>
<tr>
<td></td>
<td>• Lime/GGBS</td>
<td>• Emulsion/PC/PFA</td>
<td>• Emulsion/GGBS or</td>
</tr>
<tr>
<td></td>
<td>• Lime/PFA/GGBS</td>
<td>• Emulsion/PC/GGBS</td>
<td>• Emulsion/Lime/PFA or</td>
</tr>
<tr>
<td></td>
<td>• Lime/’other’</td>
<td>• Emulsion/PC/’other’</td>
<td>• Emulsion/Lime/’other’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Emulsion/’other’</td>
</tr>
</tbody>
</table>

2 (05/18) The aggregate component should be of a quality generally suitable for use in cement bound material or asphalt. However, given the nature of the operation, which involves processing arisings from existing road pavements, some discretion should be applied. The emphasis should be on ensuring that deleterious materials, such as clay lumps and badly weathered aggregate are excluded from the recycled material.

3 (05/18) When determining the grading of materials containing asphalt planings, samples should be dried to constant mass at 40°C and care should be taken not to break down the aggregated particles of asphalt unnecessarily.

4 (05/18) It is good practice to undertake mix design evaluation in advance of works on site, but it must be recognised that this is not always practicable, particularly for small projects. Additionally, there will not always be time for the full design procedure and, in particular, the curing stage to be carried out in advance of the works. Where this is the case, information from earlier works with the same process or accelerated curing regimes should be taken into consideration.

The components used in the mix design stage should represent the materials available in the permanent works. Where a representative component is unavailable, the Contractor should use a replacement component of similar properties in the mix design stage.

The laboratory prepared aggregate should be thoroughly mixed with measured proportions of the bitumen binder, cementing binder and adhesion agent(s). The type and grade of the bitumen and adhesion agent(s) used in the trial mixtures shall be the same as those used in the finished works.

For QVE, the Contractor should declare the Indirect Tensile Stiffness Modulus in accordance with BS DD 213. For SVE it is recommended that an accelerated curing regime is used involving curing at 60°C for 72 hours and then determining Indirect Tensile Stiffness Modulus. However, the values obtained in this way should not be expected to reflect in situ performance in the same way as for the other material types.

For QH and SH materials the Contractor should declare the minimum performance class achieved according to the direct measurement of Dynamic Modulus and Flexural Strength after conditioning; where these values are not directly measurable, suitable alternative apparatus and transfer functions may be utilised as described below.

If information is required on the moisture sensitivity of the mixtures, additional sets of specimens can be made up and tested after 24 hours soaking in water. The soaked specimen should not show any signs of cracking or swelling and the modulus or strength values should be at least 75% of the un-soaked values.
Declaration using alternative test methods for hydraulic mixtures should be dealt with as follows:

Using compressive strength tests in accordance with prEN13286 Part 41 and using relationships from Croney (1991):

\[E_{\text{dyn}} = \frac{\log f_f + 0.773}{0.0301} \]

\[f_f = 0.11 f_c \]

Using the indirect tensile strength and stiffness in accordance with prEN13286 Part 42

\[E_{\text{dyn}} = 11 + 0.84 E_{\text{ISTM}} \]

\[f_f = 1.33 f_t \]

Where \(E_{\text{dyn}} \) is elastic dynamic stiffness in GPa, \(E_{\text{ISTM}} \) is the ISTM in GPa, \(f_f \) is the flexural strength in MPa, \(f_c \) is the compressive strength in MPa, \(f_t \) is the indirect tensile strength in MPa.

This declaration shall include the direct value from laboratory tests and also a predicted 360 day value. Factors can be used to relate the laboratory test values with 360 day test values. Based on current knowledge, the following factors are suggested; other factors may be used supporting evidence. These factors should be applied to the test results prior to any transfer functions.

TABLE NG 9/29: (05/18) Factors to Link Laboratory Test Values and 360 Day Values

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>QH</td>
<td>1.2</td>
</tr>
<tr>
<td>QVE</td>
<td>1.0</td>
</tr>
<tr>
<td>SH</td>
<td>1.0</td>
</tr>
<tr>
<td>SVE</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The Contractor should also justify this design with appropriate references to design charts or if requested by the Overseeing Organisation, carrying out analytical pavement design.

5 (05/18) It is recommended that a trafficking trial be performed as part of the mixture approval trial and is a best-practice approach to ensure that excessive deformation will not occur in the permanent works. It should be noted that a trafficking trial cannot guarantee deformation resistance in the permanent works and it can be a time-consuming method of approving a foundation.

As a general rule, the ‘Quick’ mixtures, which include cement, are less likely to be susceptible to rutting, as are those with a stable, angular, granular aggregate content. Particular care should be taken if there is a high proportion of rounded gravel.

A trafficking trial may not be necessary if:

- evidence is available to show that the proposed construction (materials, construction and thicknesses) has performed well at other sites under the same moisture conditions; or
- the type of construction is of a type that is unlikely to be susceptible to deformation.

The experience of the Contractor with this type of work and evidence of satisfactory application of the same techniques on similar sites in the past should be taken into consideration.

Deformation may also result from weak underlying foundations which may be exposed during recycling operations. This should be taken into account by those responsible for the design of the works. Whether a trafficking trial is
performed or not, it is important to ensure that the foundation meets the specified requirements in the permanent works.

If the construction is to be trafficked by special, very heavy vehicles, additional consideration should be given to the proven performance of the material approval trial under trafficking in relation to these vehicles.

6 (05/18) The plant used for ex situ stabilisation should be capable of achieving controlled batching by weight or volume. The plant should have hoppers and tanks appropriate for the component materials to be mixed. The mixing plant shall be located close enough to the site to enable placing of the material within the appropriate setting time.

7 (05/18) It is important to establish a testing regime for end performance properties (stiffness, tensile strength) appropriate to the nature of the works. It is recommended, given the precision of the testing, the results are assessed for conformity in sets of six. This does not, however, mean that a full set of six specimens needs to be made up at one time.

For works of a reasonable size, it is recommended that specimens are prepared at an overall frequency of three per 1000 tonnes, with a minimum of three per working day. Conformity should be assessed on a rolling basis.

It may be possible to relax this requirement for small and intermittent jobs.

40kg of material is required for each sample to have sufficient material for the three test samples (PRD, Cylindrical and Moisture Content) to be produced. PRD samples require a minimum of 5kg of material; Cylindrical samples, 4kg; Moisture Content samples, 3kg; as well as three PSD tests from a bulk sample of six individual samples.

8 (05/18) A PRD or other other suitable mould may be used. Where long-term storage of materials is required, the use of an inexpensive mould such as plastic soil pipe is advised.

9 (05/18) The criteria in this sub-Clause represent the minimum permitted end-product compliance criteria; however, they can be supplemented by other laboratory and non-destructive in situ test methods as agreed with the Overseeing Organisation. For VE materials, particularly those containing asphalt planings, analysing for bitumen content is unlikely to be of value. This aspect of process control is better controlled through tank reconciliation. A description of the supplementary test methods and expected outcomes of the testing can be including in the Material Quality Plan declaration. Supplementary testing can be of value to both the Contractor and the Overseeing Organisation and should be viewed as good practice. For example, a non-destructive falling weight test device can in certain circumstances be used to show the in situ performance of the layer and also show that curing is occurring. It is advised that any agreed supplementary testing is used as a tool for ‘acceptance’ (as opposed to ‘rejection’) so that along with practical evidence at other sites these may be used to resolve non-compliance issues should they occur.

NG 954 (05/18) Method for Laboratory Determination of Interface Properties Using the Modified Leutner Shear Test

1 (05/18) The test method is intended to assess the bonding between adjacent asphalt pavement layers using cylindrical samples. It is also appropriate for asphalt applied to concrete.

2 (05/18) The peak shear stress at the interface between asphalt layers measured using the Modified Leutner Shear Test should not be less than 1MPa for an interface within the top 75 mm of the pavement structure and not less than 0.5MPa for interfaces at or below the top 75 mm.

3 (05/18) Clause 954 incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text, and the publications are listed in Appendix F. For dated references, subsequent amendments to or revisions of any of these publications apply to this Clause only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments).

4 (05/18) The Leutner shear test was developed in Germany in the late 1970s as a simple means of undertaking a direct shear test on a bond between two pavement layers. The test is performed on 150 mm diameter cores comprising at least two layers (with a bond between them) taken either from a pavement or produced in the laboratory. The principle of the test is to apply a shear displacement rate across the interface under investigation and monitor the resulting shear force. No normal force is applied to the specimen. The standard loading rate is
50 mm/min and the test is typically carried out at 20°C. It should be noted that a 5mm gap is introduced in this modified version of the shear test, as shown in Figure 9/2, in order to give a certain level of tolerance for interface alignment to the shear plane.

5 (05/18) With reference to sub-Clause 954.4, shear test apparatus is commercially available. Various sizes of standard shearing rings are also available, necessary in order to incorporate some variation in specimen diameter. It should be noted that these standard shearing rings require modification to introduce a 5 mm gap over the shear plane (see sub-Clause 954.3 above).

6 (05/18) It is recommended to use a servo-hydraulic universal testing machine with an incorporated data logging system. However, other loading frames (such as the Marshall apparatus) can also be used, providing they fulfil the requirements of sub-Clause 954.4 (ii).

7 (05/18) The data logging system described in sub-Clause 954.4 (iii) shall to be capable of collecting around 40 data points per second.

8 (05/18) The recommended material for the metal extension is aluminium.

9 (05/18) The recommended diameter of the cored specimens is 150 ± 2 mm. It is recommended to have a range of shearing rings and metal extensions to cover the range of specimen diameters.

10 (05/18) The thickness of the layer below the interface to be tested shall be sufficient to ensure a secure grip is maintained on the specimen during the test (Figure 9/2 B). 60 mm is recommended as the minimum thickness.

11 (05/18) The thickness of the layer above the interface shall be sufficient to ensure a proper contact with the upper shearing ring (Figure 9/2 C). The minimum recommended thickness of the layer above the interface is 15 mm. If the thickness of the layer above the interface is between 15 and 30 mm, a metal extension shall be glued on the top of the layer above the interface.

12 (05/18) It is recommended that the shearing rings are selected to form a loose fit around the specimen. For example, if the specimen diameter is 150.1 mm, 151 mm shearing rings shall be selected.

13 (05/18) It is recommended that the metal extension selected shall have a diameter slightly larger than the diameter of the specimen (the difference shall not be more than 2 mm). When a metal extension is used, it is recommended that the shearing rings are selected to form a loose fit around the metal extension. For example, if the metal extension diameter is 151 mm, 152 mm shear rings shall be selected.

14 (05/18) The sample support shown in Figure 9/2 B needs to be tightened using a hand spanner to give a firm grip. However, care is necessary to avoid over tightening and consequent damage to the specimen.

15 (05/18) It is necessary to carefully inspect both sections of the sheared specimen. Crushed coarse aggregate on the specimen edge could indicate misalignment of the specimen interface in the shear plane.

NG 955 (05/18) Ageing Profile Test Using a Modified Rolling Thin Film Oven Test (MRTFOT)

1 (05/18) The MRTFOT uses screws to continually stir and mix polymer modified bituminous binders in the sample cans so they may be aged without the problems of skinning and polymer phase separation.

The air jetted into the glass bottles normally used in the RTFOT has sometimes caused polymer binders to creep out of the bottles, because of the return air flow. The MRTFOT uses the screws to pull binder to the back of the cans as they rotate in the carousel and this counteracts the air flow to the front. If the RTFO carousel rotates anticlockwise, viewed from the front, screws with a right-hand thread are required and if the carousel rotates clockwise, screws with a left hand thread are required. The screws also help in the mixing and binder film exposure accelerating oxidation. Glass bottles do not have screw tops so removal of the whole sample is difficult. To further aid the removal of binder, the MRTFOT uses PTFE coated cans which also assists with the cleaning. Glass bottles do not have precision made walls and in order for the screws to uniformly scrape the internal walls, aluminium PTFE coated cans were designed. A heavy stainless steel screw with a flat edge was developed to enhance scraping and pressure at the interface and a semi-circular thread incorporated to maximise binder movement. The design (unthreaded shank) also minimises the opportunity for the screw to worm itself out of the orifice. The stainless steel screws are manufactured from high quality surgical steel so that they are resistant to corrosion, which is particularly
a problem with emulsions. The screws, produced to a ‘fine machined finish’, and the sample cans manufactured
to the dimensions stated, with screw top lids, are all commercially available. A certificate of conformity should be
obtained. It is convenient to have the PTFE coating a contrasting colour to the binder (e.g. green) so that the binder
sample can be clearly identified.

2 (05/18) The MRTFOT can be used as an alternative to PAV85 (BS EN 14769), to evaluate ‘ageing’ of the binder
on the road. The MRTFOT does not require a Pressure Ageing Vessel (PAV) apparatus, which is considered to be a
greater safety hazard when using emulsions or fluxed binders containing highly volatile oil. In static tests such as
the PAV, the trays used in BS EN 14769 (3mm thick sample) may result in skinning and heterogeneous ageing. The
combination of the screw continually mobilising the binder film and the rotation of the specimen in the air stream
in the MRTFOT reduces the test time whilst maintaining a homogeneous sample. This is particularly relevant for
heavily polymer-modified binders and is one reason why 135ºC was selected. The protocol minimises the possible
phase separation of the polymer from the base binder.

3 (05/18) Binder samples may lose volatile oil, but may increase in weight due to the products of oxidation, so
care should be exercised in evaluating weight changes.

4 (05/18) Binder samples for test from other apparatus (e.g. recovered binders from roads) may be loaded into the
sample cans without carrying out the RTFOT at 163ºC.

5 (05/18) Binders that have been tested in accordance with BS EN12607-1 in a separate RTFOT apparatus using
conventional glass bottles do not necessarily result in identical ‘Short-term Aged Binder’ after the MRTFOT. This
may be the case when the binder is heavily modified, where skinning is likely to occur and the binder does not roll
exposing fresh binder faces for oxidation to take place, as originally intended in the ASTM D2872 test, which was
designed for unmodified bitumen.

6 (05/18) The test method produces around 10g of material per sample can. This is sufficient for testing using
rheology (see BS EN 14770) or Vialit Pendulum Cohesion (see BS EN 13588). For other tests, sufficient sample
cans should be used and the binder combined prior to testing.

7 (05/18) Polymer modified binders may need to be heated and stirred prior to testing in other apparatus to ensure
that internal stresses are not present in the test specimens. This thermal history is to be reported.

(05/18) Asphalt Binders

8 (05/18) The Ageing Profile test provides a plot, generally of complex stiffness (shear) modulus G* and phase
angle δ, using a Dynamic Shear Rheometer in accordance with BS EN 14770. The change in properties provides
an indication of how the binder will age in the road pavement and a plot is much superior to just two points:
‘Short-term Aged’ and ‘Long-term Aged’. The ‘Long-term Aged’ condition represents the near end-life of asphalt
and, since most binders asymptote to similar stiffness after that amount of ageing, it does not reveal a great deal
of information; conversely, early-life points can show the rate of loss of beneficial characteristics. The correlation
between ageing in road pavements and laboratory ageing methods is not far advanced and this procedure is able to
generate a large number of samples at a realistic price to study durability. Longer periods of test providing larger
volumes of aged binder, such as generated by the RCAT, may have greater precision, but the cost of this specialist
equipment and the time taken to complete the test (a couple of hundred hours), supports the argument for more
rapid tests such as the Ageing Profile test to be used.

9 (05/18) Hard grade bitumens to BS EN 13924 may be assessed using the Ageing Profile test. The viscous elastic
transition temperature may be plotted and some correlation with cracking of both stone mastic asphalt and high
modulus asphalt has been determined.

(05/18) Bituminous Emulsions and Fluxed Binders

10 (05/18) The initial stage of the MRTFOT is able to drive off water from polymer modified bituminous emulsions
rapidly at a comparatively low temperature of 85ºC. This is because the stainless steel screws continually disturb
the binder and there is a controlled nitrogen gas flow over the binder surface encouraging a homogenous break
without skinning. This is important, as higher temperatures would drive off the volatile oils too quickly and/or
destroy the microstructure of the binder, which would not, therefore, simulate the residual binder on the road. Some
polymer microstructures are more sensitive to temperature than others and this should be considered when heating samples for subsequent testing.

11 (05/18) Nitrogen gas is used, rather than air, to minimise ageing of the binder and to increase safety, especially with some emulsions (containing some very light oils) and also for fluxed binders.

12 (05/18) The second stage of the test method uses nitrogen gas at 135°C for 30 minutes (after ramping the RTFO temperature up from 85°C to 135°C) to remove most of the highly volatile oil left within the sample after the first stage. This process results in a ‘Recovered Binder’ equivalent to that obtained by the recovery process described in BS EN 13074-1. These recovery methods simulate the state of a binder film soon after application using conventional spraying or mixing equipment; the method is not intended to drive off all the volatile components, but to enable testing of recovered binder properties as detailed in BS EN 13808 for emulsions. The test method may also be used for conventional unmodified emulsions.

13 (05/18) The ‘Recovered Binder’ from the sample cans may be conveniently scraped onto a non-adhesive sheet or dish (e.g. PTFE or silicone) in order to collect enough material for a test. Care should be taken to minimise volatile oil loss and opportunity for oxidation by ensuring a quick transfer to a suitable storage pot or test apparatus.

14 (05/18) The percentage loss of weight should be recorded as an indicator of water and/or volatile oil loss and compared to the binder content of an emulsion or the percentage volatile flux.

15 (05/18) Recording sample history is important as the method of sampling, whether from spraybar or storage tank or just after manufacture, may affect the properties of the binder. The sample size and its subsequent treatment in terms of, for example, re-heating, exposure to frost and regular stirring, may make a considerable difference to the result for water or volatile oil loss.

16 (05/18) Preservatives

17 (05/18) These may be solvent based materials (typically 50% solvent) with hard base binders, or sometimes resin based systems. Other components are used to improve the aged bitumen in road pavements (e.g. to replace the lost maltene phase). It is the solvent based preservatives that require careful attention to the laboratory protocol, hence the use of nitrogen and fume cupboards. The RTFOT also needs proper venting.

18 (05/18) The protocol provides binder samples that may be tested using rheology to compare ageing of the control against ageing of the preservative treated aged control binder. The use of the screws ensures mixing so the improvement is the maximum potential that could possibly be expected.

19 (05/18) After initial addition, preservatives provide improvement of the properties of the binder, because they soften the aged bitumen. However, after subsequent ageing, some preservatives show hardening, which, unless the treatment is repeated on a regular basis, might be detrimental to the performance of the surface of the road pavement. Data are required to correlate test results to field performance.

20 (05/18) The test provides product identification and an indication of performance, so that any changes in formulation may be detected and accommodated and also consistency of supply may be established.

21 (05/18) Some preservatives are emulsion systems and may be polymer modified binders. These binders improve the aged control bitumen in the test, but it has not yet been demonstrated that they can penetrate the road surfaces sufficiently to provide the same benefit in situ.
MRTFOT
163°C
45min
Air jetted at 4000ml/min
Stainless Steel Screws
Weight loss reported as described in BS EN 12607-1
Sample: ‘Short-Term Aged Binder’

MRTFOT
163°C
15min
Air jetted at 4000ml/min
Stainless Steel Screws
No sampling

Transition Procedure
Cool from 163°C to 135°C

Ageing Profile Test
135°C
Air jetted at 4000ml/min
Stainless Steel Screws
2h Weight loss reported (Aged₀ Binder)
4h Weight loss reported (Aged₂ Binder)
6h ‘Aged₆ Binder’ Weight loss reported (Sample equivalent to PAV85 ‘Long-term Aged Binder’)

RTFOT
163°C Air
Sample 45min
Total 60min

Aged₂ Binder
2h 135°C Air

Aged₂ Binder
4h 135°C Air

Aged₆ Binder
6h 135°C Air

FIGURE NG 9/1 (05/18) Polymer Modified and Unmodified Bituminous Binders for Asphalts – Ageing Profile Test
FIGURE NG 9/2 (05/18) Polymer Modified and Unmodified Bituminous Emulsion and Fluxed Binder – Ageing Profile Test
Addition of Preservative
Remove stainless steel screws
Remove some binder and replace with preservative (keeping the residual weight constant), swirl/coat,
Cool to ambient on side at 20°C (ambient) for 24 hours in fume cupboard
Weight loss reported

Aged Control Binder

Aged Control Binder plus Preservative

Transition Procedure
Raise from 50°C to 135°C
Nitrogen gas at 4000ml/min
Approximately 0.5h

Ageing Profile Test
135°C
Replace stainless steel screws
Air jet at 4000ml/min
2h
Sample
Weight loss reported
Further samples if required
 e.g. at 4h

MRTFOT
Control binder - Sample
163°C Air jet at 4000ml/min
45min
Stainless steel screws
Sample after MRTFOT
Weight loss reported

Transition Procedure
Cool from 163°C to

MRTFOT
135°C Air jet at 4000ml/min
4h
Stainless steel screws
Sample of aged control
Weight loss reported

MRTFOT
50°C
2h (no screws)
Nitrogen gas jet at 4000ml/min
Sample
Weight loss reported

FIGURE NG 9/3 (05/18) Preservative Test Protocol
Test

After MRTFOT
Sample of aged bitumen (originally 40/60 penetration grade) prepared as a homogenous thin film in PTFE coated aluminium can

Addition of Preservative
Screws removed
Cooled to ambient (approx. 20°C) to provide hard binder film
Preservative added and left for 24 hours in a fume cupboard

Treated material
Heat to 50°C and rotate for 2 hours in nitrogen (no ageing), no mixing (no screws)

Ageing of the treated material
Heat to 135°C introduce screws, mixing, transition period from 50°C to 135°C in nitrogen then ageing in air for 2 hours

Simulates

Aged binder in asphalt after 3 to 5 years

Application of preservative to road surface with some loss of volatiles

Coating, further loss of volatiles and accelerated penetration of the preservative into surface of aged binder

In service ageing to show maximum effect of a preservative when compared with the untreated bitumen control after 5-10 years

FIGURE NG 9/4 (05/18) Preservative Protocol – Stages of Simulative Ageing
FIGURE NG 9/5 (05/18) Preservatives — Improvement in Capacity for Ageing as shown by VET temperature
NATIONAL ALTERATIONS OF THE OVERSEEING ORGANISATION OF SCOTLAND

NG 911TS (05/18) Rolled Asphalt Surface Course (Design Mixtures)

1 (05/18) The special requirements included in contract specific Appendix 7/1 may include specific mixture designations, binder grade and for 30/14 and 35/14 mixtures, the required properties of coated chippings in accordance with Clause 915.

2 (05/18) The method of determining the design binder content for surface course mixtures is described in BS 594987, Annex H. The target binder content of the mixture will normally be the higher of the design binder content and the minimum binder content indicated in BSI PD 6691, Annex C, Table C2A or Table C2C as appropriate.

3 (05/18) The Contractor may usually be permitted to use either Type F or Type C mixtures. The use of 70/100 grade bitumen will also usually be permitted, when there is experience of good performance with locally available mixtures.

(05/18) Marshall Stability and Flow

4 (05/18) In the past, Marshall stability and flow have been used as indicators of resistance to permanent deformation. The BS EN 13108 standards no longer require these properties to be specified because resistance to deformation is now measured directly using wheel tracking apparatus. In heavily trafficked situations, where resistance to permanent deformation is of high importance, it is recommended that performance related Hot Rolled Asphalt to Clause 943 is used.

5 (05/18) Marshall stability and flow values at different binder contents are determined as part of the procedure for establishing the design binder content for surface course mixtures. For roads that are not heavily trafficked, stability and flow values at the target binder content may also be used as an additional requirement. The selected values should comply with the requirements of Table NG 9/1TS.

TABLE NG 9/1TS: (05/18) Criteria for the Stability and Flow of Rolled Asphalt Surface Course (Design Mixtures)

<table>
<thead>
<tr>
<th>Traffic (commercial vehicles per lane per day)</th>
<th>Stability Range, kN</th>
<th>Maximum Flow, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1500</td>
<td>3 to 8</td>
<td>5 mm</td>
</tr>
<tr>
<td>1500 to 3000</td>
<td>4 to 8</td>
<td>5 mm</td>
</tr>
</tbody>
</table>

NOTE 1. Experience of locally available mixtures may indicate that a maximum stability value of 10.0 kN should be specified. If the stability value is greater than 8 kN, the maximum flow value may be increased to 7 mm.

NOTE 2. Performance related Hot Rolled Asphalt to Clause 943 should be used when the traffic flow is greater than 3000 commercial vehicles per lane per day.

NOTE 3. The stability and flow values are those determined at the target binder content. These values may be different to the values determined at the design binder content.
NATIONAL ALTERATIONS OF THE OVERSEEING ORGANISATION OF WALES

NG 911WG (05/18) Rolled Asphalt Surface Course (Design Mixtures)

1 (05/18) The special requirements included in contract specific Appendix 7/1 may include specific mixture designations, binder grade and for 30/14 and 35/14 mixtures, the required properties of coated chippings in accordance with Clause 915.

2 (05/18) The method of determining the design binder content for surface course mixtures is described in BS 5949, Annex H. The target binder content of the mixture will normally be the higher of the design binder content and the minimum binder content indicated in BSI PD 6691, Annex C, Table C2A or Table C2C as appropriate.

3 (05/18) The Contractor may usually be permitted to use either Type F or Type C mixtures.

(05/18) Marshall Stability and Flow

4 (05/18) Marshall stability and flow values at different binder contents are determined as part of the procedure for establishing the design binder content for the surface course mixtures. For roads that are not heavily trafficked, stability and flow values at the target binder content may also be used as an additional requirement. The selected values should comply with the requirements of Table NG 9/1WG.

5 (05/18) In heavily trafficked situations, where resistance of permanent deformation is of high importance, it is recommended that performance related Hot Rolled Asphalt to Clause 943 is used.

TABLE NG 9/1WG (05/18) Criteria for Stability and Flow of Rolled Asphalt Surface Course (Design Mixtures)

<table>
<thead>
<tr>
<th>Traffic (commercial vehicles per lane per day)</th>
<th>Stability Range, kN</th>
<th>Maximum Flow, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than or equal to 2000</td>
<td>4 to 10</td>
<td>5</td>
</tr>
</tbody>
</table>

NOTE 1. The maximum flow may be increased to 7mm, if the stability is greater than 8 kN.

NOTE 2. Performance related Hot Rolled Asphalt to Clause 943 should be used when the traffic flow is greater than 2000 commercial vehicles per lane per day.

NOTE 3. The stability and flow values are those determined at the target binder content. These values may be different to the values determined at the design binder content.

6 (05/18) High Stone Content Asphalt (HSCA) has successfully been used as a surface course throughout North Wales for over 25 years. HSCA will only be approved within speed limits of 30mph or less where microtexture is the main contributor to skidding resistance.