SERIES 500
DRAINAGE AND SERVICE DUCTS

Contents

<table>
<thead>
<tr>
<th>Clause</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>(05/01) Pipes for Drainage and Service Ducts</td>
<td>2</td>
</tr>
<tr>
<td>502</td>
<td>Excavation for Pipes and Chambers</td>
<td>5</td>
</tr>
<tr>
<td>#503</td>
<td>Bedding, Laying and Surrounding of Pipes</td>
<td>5</td>
</tr>
<tr>
<td>504</td>
<td>Jointing of Pipes</td>
<td>7</td>
</tr>
<tr>
<td>505</td>
<td>Backfilling of Trenches and Filter Drains</td>
<td>8</td>
</tr>
<tr>
<td>506</td>
<td>Connecting to Existing Drains Chambers and Channels</td>
<td>9</td>
</tr>
<tr>
<td>507</td>
<td>(05/01) Chambers</td>
<td>9</td>
</tr>
<tr>
<td>#508</td>
<td>Gullies and Pipe Junctions</td>
<td>10</td>
</tr>
<tr>
<td>509</td>
<td>Testing and Cleaning</td>
<td>11</td>
</tr>
<tr>
<td>510</td>
<td>Surface Water Channels and Drainage Channel Blocks</td>
<td>12</td>
</tr>
<tr>
<td>511</td>
<td>Land Drains</td>
<td>12</td>
</tr>
<tr>
<td>512</td>
<td>Backfilling to Pipe Bays and Verges on Bridges</td>
<td>12</td>
</tr>
<tr>
<td>513</td>
<td>Permeable Backing to Earth Retaining Structures</td>
<td>12</td>
</tr>
<tr>
<td>514</td>
<td>Fin Drains</td>
<td>13</td>
</tr>
<tr>
<td>515</td>
<td>Narrow Filter Drains</td>
<td>16</td>
</tr>
<tr>
<td>516</td>
<td>Combined Drainage and Kerb Systems</td>
<td>17</td>
</tr>
<tr>
<td>517</td>
<td>Linear Drainage Channel Systems</td>
<td>18</td>
</tr>
<tr>
<td>518</td>
<td>(05/01) Thermoplastics Structured Wall Pipes and Fittings</td>
<td>21</td>
</tr>
<tr>
<td>519</td>
<td>(05/01) Concrete Bagwork</td>
<td>25</td>
</tr>
<tr>
<td>520</td>
<td>(05/01) The Cleaning of Existing Drainage Systems</td>
<td>26</td>
</tr>
<tr>
<td>521</td>
<td>(11/03) Low Pressure High Volume Jetting of Drainage Systems</td>
<td>27</td>
</tr>
</tbody>
</table>

NATIONAL ALTERATIONS OF THE OVERSEEING ORGANISATIONS OF SCOTLAND, WALES AND NORTHERN IRELAND

Northern Ireland

<table>
<thead>
<tr>
<th>Clause</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>503NI</td>
<td>Bedding, Laying and Surrounding of Pipes</td>
<td>N1</td>
</tr>
<tr>
<td>508NI</td>
<td>Gullies and Pipe Junctions</td>
<td>N2</td>
</tr>
</tbody>
</table>

* denotes a Clause or Sample Appendix which has a substitute National Clause or Sample Appendix for one or more of the Overseeing Organisations of Scotland, Wales or Northern Ireland.

Amendment - November 2003
DRAINAGE AND SERVICE DUCTS

501 (05/01) Pipes for Drainage and for Service Ducts

General

1 Where the term drain is used in this Series it shall be deemed to include the terms sewer and piped culvert. The Contractor shall design the piped culverts listed in Appendix 1/10 in accordance with the requirements of Clause 106.

2 All drains constructed of pipes as well as piped culverts up to and including 900 mm internal diameter shall comply with this Series and any additional requirements in Appendix 5/1. Drains constructed using pipes exceeding 900 mm internal diameter as well as box and piped culverts shall comply with the 2500 Series. Unless otherwise described in Appendix 5/1 only one type of pipe shall be used within any individual drain or service duct between consecutive chambers. The Contractor shall ensure that plastics pipes are not subject to deterioration due to sunlight during the period between manufacture and installation in the ground.

Pipes for Drainage

3 Pipes for drainage shall be selected from the alternatives in Table 5/1 and shall comply with the standards and particular requirements therein. The Contractor shall show that the pipes he selects have hydraulic flow capacity equal to that adopted in the hydraulic design of the system as described in Appendix 5/1. Pipes and fittings other than those included in Table 5/1 shall be permitted provided that they hold a current British Board of Agrément Roads and Bridges Certificate (or equivalent) stating that they are a suitable alternative for the usage specified in Table 5/1. On completion of the whole of the drainage works, the Contractor shall provide the Overseeing Organisation with a schedule showing details of all pipe types used, including quality, joints and name of manufacturer.

Corrugated Steel Pipes

4 Corrugated steel pipes shall be manufactured from either:

(i) bolted segmental plate pipes complying with sub-Clause 6 of this Clause and having plate thicknesses as described in Appendix 5/1; or

(ii) galvanized steel sheet suitable for lock seam fabrication complying with BS EN 10142 grade DX51D + Z600, or aluminium coated steel sheet complying with AASHTO specification M274-87(2000).

Corrugated steel pipes complying with (ii) above shall be manufactured from steel of minimum thickness 1.25 mm unless otherwise described in Appendix 5/1.

5 Where described in Appendix 5/1 corrugated steel pipes shall be provided with additional protection of hot applied bitumen complying with AASHTO specification M190-95(2000), or an equivalent coating system.

6 Bolted segmental plate pipes shall meet the following requirements:

(i) Steel for the plates shall comply with BS 1449 : Part 1.1, Grade 3 or Grade 4, Condition HR.

(ii) After forming, the depth of the corrugations shall be within a tolerance of ± 6% and the pitch of the corrugations within a tolerance of ± 4% of the nominal dimensions. Plates shall have a minimum lip of 45 mm beyond each end crest. Cut edges shall be free from notches, gouges, rust or burrs.

(iii) Bolts and nuts for connecting plates shall comply with BS 4395 : Part 2, nominal size M20; or with BS EN ISO 898-1 and BS EN ISO 898-2 property class 10.9.

(iv) When all the plates have been assembled, the nuts shall be tightened against a domed washer. The tightening shall be repeated if necessary to achieve the torque recommended by the manufacturer.

(v) Steel plate shall be galvanized in compliance with Clause 1909. Plates shall be galvanized after forming the corrugations and completing all necessary cutting, punching and drilling. Units in which the zinc coating has been burned by welding or otherwise damaged in fabrication, transport or handling at Site shall be made good in compliance with Clauses 1907 and 1908. Bolts and nuts shall be galvanized in compliance with Clause 1909.
TABLE 5/1: (05/01) Pipes for Drainage

<table>
<thead>
<tr>
<th>Material</th>
<th>Usage</th>
<th>Standard</th>
<th>Particular Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitrified clay</td>
<td>Foul drains</td>
<td>BS 65 or BS EN 295</td>
<td>“Normal” pipes as defined in BS 65</td>
</tr>
<tr>
<td></td>
<td>Surface water drains</td>
<td>BS 65 or BS EN 295</td>
<td>“Normal” or “surface water” pipes as defined in BS 65</td>
</tr>
<tr>
<td></td>
<td>Filter drains</td>
<td>BS 65</td>
<td>Unperforated, not exceeding 2.0 m in length with spigot and socket open joints OR Perforated with flexible mechanical joints</td>
</tr>
<tr>
<td>Concrete (With Portland cement or sulfate-resisting cement when required in Appendix 5/1. Supersulfated cement shall not be used)</td>
<td>Foul & surface water drains not exceeding 900 mm internal diameter</td>
<td>BS 5911 : Part 100 (Ordinary reinforced or unreinforced)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface water drains not exceeding 900 mm internal diameter</td>
<td>BS 5911 : Part 103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filter drains</td>
<td>BS 5911 : Part 110</td>
<td>For use with joints complying with sub-Clause 504.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BS 5911 : Part 114</td>
<td></td>
</tr>
<tr>
<td>Glass reinforced plastics (GRP)</td>
<td>Foul & surface water drains</td>
<td>BS 5480</td>
<td>Class to be as specified in Appendix 5/1</td>
</tr>
<tr>
<td>Iron</td>
<td>Foul & surface water drains</td>
<td>BS 437 (Cast iron)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BS EN 598 (Ductile iron)</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 5/1: (11/03) Pipes for Drainage (continued)

<table>
<thead>
<tr>
<th>Material</th>
<th>Usage</th>
<th>Standard</th>
<th>Particular Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermoplastics solid wall pipes and fittings not exceeding 900 mm diameter</td>
<td>Foul & surface water drains</td>
<td>BS 4660 or BS 5481 or BS EN 1401 (PVC-U)</td>
<td>See the UK national forward to the relevant BS EN. The grade appropriate for use without structural calculations shall be used, i.e. SN8 for PP & PE and SN4 (SDR 41) for PVC-U</td>
</tr>
<tr>
<td>Unplasticised polyvinyl-chloride (PVC-U)</td>
<td></td>
<td>BS EN 1852-1 (PP) prEN 12666-1 (PE)</td>
<td></td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>Filter drains</td>
<td>BS 4660 or BS 5481 or BS EN 1401 (PVC-U)</td>
<td>Perforated with not less than 1000 mm² of holes per metre length of pipe. The perforations shall not reduce the pipe stiffness by more than 5%. Circular perforations not greater than 10 mm nor less than 3 mm in diameter or rectangular slots not greater than 4 mm nor less than 0.6 mm in width</td>
</tr>
<tr>
<td>Polyethylene (PE)</td>
<td></td>
<td>BS EN 1852-1 (PP) prEN 12666-1 (PE)</td>
<td></td>
</tr>
<tr>
<td>Thermoplastics structured wall pipe and fittings not exceeding 900 mm diameter</td>
<td>Surface water drains</td>
<td>Clause 518</td>
<td>Unperforated with watertight joints and with a pipe stiffness class, creep ratio and impact resistance as described in Appendix 5/1</td>
</tr>
<tr>
<td>Filter drains</td>
<td>Clause 518</td>
<td></td>
<td>Perforated with not less than 1000 mm² of holes per metre length of pipe. The perforations shall not reduce the pipe ring stiffness by more than 5%. Circular perforations not greater than 10 mm nor less than 3 mm in diameter or rectangular slots not greater than 4 mm nor less than 0.6 mm in width</td>
</tr>
<tr>
<td>Subsoil field drains</td>
<td>BS 4962 or Clause 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrugated steel</td>
<td>Surface water drains, filter drains not exceeding 900 mm internal diameter</td>
<td>AASHTO specification M36M-01 except as otherwise required in sub-Clauses 501.4, 5 and 6</td>
<td></td>
</tr>
</tbody>
</table>

All drains exceeding 900 mm internal diameter shall comply with Series 2500.

Pipes for Service Ducts

7 Pipes for service ducts, excluding those in use in motorway communications installations, shall be selected from the alternatives in Table 5/2 and shall comply with the standards and particular requirements therein. Pipes for use in motorway communications installations shall comply with Series 1500. Pipes for service ducts shall have a smooth internal bore without any sharp edges to the ends of pipes. They shall comply with any additional requirements described in Appendix 5/2, and be of 100 mm internal diameter unless otherwise described therein. Their alignment shall be tested in accordance with sub-Clause 509.10. The use of pipes and fittings other than those included in Table 5/2 shall be permitted provided that they hold a current British Board of Agrément Roads and Bridges Certificate (or equivalent) stating that they are a suitable alternative to those listed in Table 5/2.

8 Each duct shall be fitted with a pigmented, stranded polypropylene or equivalent rot-proof material draw rope of 5 kN breaking load and having a design life of not less than 20 years, the ends of which shall be either made fast to marker blocks as shown on HCD Drawing Number I1 or secured inside chambers. The ends of a duct shall be either sealed by removable stoppers immediately it has been laid, or terminated in chambers of the type specified in Appendix 5/2.
TABLE 5/2: (11/03) Pipes for Ducts

<table>
<thead>
<tr>
<th>Material</th>
<th>Standard</th>
<th>Particular Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitrified clay</td>
<td>BS 65 or BS EN 295</td>
<td>Plain-ended, self-aligning flexible sleeve jointed with internal ends radiused to 3 mm minimum</td>
</tr>
<tr>
<td>Iron</td>
<td>BS EN 598 or BS EN 295</td>
<td>Class to be as specified in Appendix 5/2</td>
</tr>
<tr>
<td>Glass reinforced plastics</td>
<td>BS 5480</td>
<td></td>
</tr>
<tr>
<td>Thermoplastics solid wall</td>
<td>BS 4660 or BS 5481 or BS 3505 (Class C) or BS 3506 (Class C) or BS EN 1401 or BS EN 1452 class PN10.</td>
<td>When pipes to BS 3505 (Class C) or BS 3506 (Class C) are used, joints shall comply with BS 4346 : Part 2</td>
</tr>
<tr>
<td>Unplasticised polyvinyl-chloride (PVC-U)</td>
<td>BS EN 1852-1 (PP) or BS EN 12666-1 (PE)</td>
<td></td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>BS EN 1401</td>
<td></td>
</tr>
<tr>
<td>Polyethylene (PE)</td>
<td>BS EN 1452 class PN10.</td>
<td></td>
</tr>
<tr>
<td>Thermoplastics single wall corrugated (Restricted to ducts buried a minimum of 600 mm below the surface)</td>
<td>BS EN 50086-2-4</td>
<td>Ducts to BS EN 50086-2-4 shall be classified as normal duty, have a degree of protection against ingress of foreign objects classification rating of 3 or 4 and a degree of protection against ingress of water classification rating of 7. Appendix 5/2 shall state the resistance to bending requirements.</td>
</tr>
<tr>
<td>Thermoplastics structured wall</td>
<td>BS EN 50086-2-4 and Clause 518</td>
<td>Ducts to BS EN 50086-2-4 shall be classified as normal duty, have a degree of protection against ingress of foreign objects classification rating of 3 or 4 and a degree of protection against ingress of water classification rating of 7. Appendix 5/2 shall state the resistance to bending requirements.</td>
</tr>
</tbody>
</table>

Pipes for use in motorway communications installations shall comply with Series 1500

502 Excavation for Pipes and Chambers

1. Excavation shall comply with Clause 602 and with the following:

 (i) (11/03) soft spots existing below the bottom of an excavation shall be removed and the resulting voids backfilled with Type 1 sub-base material complying with Clause 803 or pipe bedding material complying with Clause 503, both well compacted, or ST1 concrete in compliance to Clause 2602;

 (ii) any additional excavation below the bottom of an excavation that is required because the Contractor has allowed the bottom to become soft or otherwise unacceptable for the construction of the pipeline or chambers shall be made good as described in sub-Clause 1(i) of this Clause;

 (iii) any excavation greater than the net volume required for the Permanent Works below the level of any pipe surround shall be made good as described in (i) above.

2. Unless otherwise described in Appendix 5/1, all pipes in or under new embankments shall be laid only when the embankment has been formed and compacted to formation level under paved areas, to finished earthworks level in other areas, or to a level which will give a minimum cover of 1.2 m to the pipes, whichever is the lowest.

#503 Bedding, Laying and Surrounding of Pipes

1. Immediately following the excavation of the trench, the pipes shall be laid and jointed on the pipe bed. Pipes shall be laid so that each one is in contact with the bed throughout the length of its barrel. The pipes shall be laid at the level and gradients shown on the Drawings and schedules. The deviation in level from that specified at any point shall not exceed 20 mm and in addition the algebraic difference of the deviation in level at any two points on each pipe shall not exceed 30 mm. In the case of socketed or sleeve jointed pipes the bed shall be cut away and removed at each socket or sleeve to give a clearance of at least 50 mm, or 100 mm for trenches in material designated as Hard Material, so
that the socket or sleeve does not bear on the bed. Pipes shall be laid on setting blocks only where a concrete bed or cradle is used.

Pipes and fittings shall be examined for damage and the joint surfaces and components shall be cleaned immediately before laying. Measures shall be taken to prevent soil or other material from entering pipes, and to anchor each pipe to prevent movement before the work is complete.

2 Pipes complying with BS 4962 : 1989 which are corrugated coilable perforated pipes shall, unless otherwise permitted in Appendix 5/1, be laid only by automatic single pass drain laying machines.

3 (05/01) Drainage pipe and bedding combinations shall be selected from the alternatives described in Appendix 5/1. Where recycled coarse aggregate or recycled concrete aggregate is used in this Series, it shall have been tested in accordance with Clause 710. Pipe bedding, haunching and surrounding material shall be as shown on HCD Drawing Numbers F1 and F2, and shall comply with the following:

(i) For pipes on beds shown on HCD Drawing Number F1 as Types B, F and S the granular material consisting of natural and/or recycled coarse aggregate or recycled concrete aggregate shall have:
 (a) a grading in accordance with Table 5/3; and
 (b) (11/03) a water-soluble sulfate content of less than 2.3 grams of sulfate (as SO₄) per litre when tested in accordance with TRL Report 447, Test No. 1; and
 (c) (11/03) an oxidisable sulfides (OS) content of less than 0.46% of sulfate (as SO₄) when tested in accordance with TRL Report 447, Test No. 2; and
 (d) (11/03) a total potential sulfate (TPS) content of less than 0.6% of sulfate (as SO₄) when tested in accordance with TRL Report 447, Test No. 4.

(ii) (11/03) For pipes on beds shown on HCD Drawing Number F1 as Types N and T the granular material consisting of natural and/or recycled coarse aggregate or recycled concrete aggregate shall comply either with sub-Clause 3(i) of this Clause or with Table 5/4, with the water soluble, oxidisable sulfides and total potential sulfate content complying with (i) above.

TABLE 5/3: (11/03) Granular Materials to BS EN 12620 and Recycled Aggregates to Clause 710

<table>
<thead>
<tr>
<th>Nominal Pipe Diameter (mm)</th>
<th>BS EN 12620 Coarse Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Graded Aggregate Ranges (mm)</td>
</tr>
<tr>
<td>Not exceeding 140</td>
<td>-</td>
</tr>
<tr>
<td>Exceeding 140 but not exceeding 400</td>
<td>2/14 G₉,90/15 or 4/20 G₉,90/15</td>
</tr>
<tr>
<td>Exceeding 400</td>
<td>2/14 G₉,90/15, 4/20 G₉,90/15 or 4/40 G₉,90/15</td>
</tr>
</tbody>
</table>

TABLE 5/4: (11/03) Granular Materials to BS EN 12620 and Recycled Aggregates to Clause 710

<table>
<thead>
<tr>
<th>Nominal Pipe Diameter (mm)</th>
<th>BS EN 12620 CP, MP or FP</th>
<th>BS EN 12620 All-in Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Limits</td>
<td>Nominal Sizes (mm)</td>
</tr>
<tr>
<td>Not exceeding 140</td>
<td>Overall Limits</td>
<td>0/10 G₉,90</td>
</tr>
<tr>
<td>Exceeding 140 but not exceeding 400</td>
<td>Overall Limits</td>
<td>0/10 G₉,90 or 0/20 G₉,90</td>
</tr>
<tr>
<td>Exceeding 400</td>
<td>Overall Limits</td>
<td>0/10 G₉,90, 0/20 G₉,90 or 0/40 G₉,90</td>
</tr>
</tbody>
</table>

(iii) (11/03) For pipes on beds shown on HCD Drawing Number F1 as Types A and Z concrete shall be ST4 and ST2, in compliance to Clause 2602, respectively. Backfilling shall not be carried out until after the concrete has cured.

(iv) Except for filter drains a further surround above the bed, haunch and surround described above shall be provided to a height of 300 mm above the top of the pipe consisting of Class 8 lower trench fill material as described in Table 6/1 and in compliance with Series 600.

(v) Unless otherwise described in Appendix 5/1 the materials used for the bedding, haunching and surrounding of filter drains shall comply with the appropriate bedding, haunching and surrounding materials specified in sub-Clauses 503.3(i) to...
503.3.(iv) and with the requirements for backfilling specified in sub-Clause 505.3.

(vi) (11/03) The resistance to fragmentation of the coarse aggregate in accordance with clause 5.2 of BS EN 12620 shall be LA50.

4 Except where the pipeline is to be tested in compliance with Clause 509 before backfilling, the completion of the bedding, haunching and surrounding of the pipes is to be carried out immediately after jointing. The bed, haunch and surround shall be brought up equally on both sides of the pipe ensuring that it is in contact with the underside of the pipe barrel and be carefully compacted in layers not exceeding 150 mm thickness ensuring full compaction next to the trench walls. Pipes shall be maintained to line and level during the bedding, haunching and surrounding operations. Where pipelines are to be tested before being covered the bedding haunching and surrounding material shall only be brought up sufficiently to support the pipeline and the joints shall be left exposed until the test is completed satisfactorily.

5 Duct construction shall comply with the requirements of Appendix 5/2.

504 Jointing of Pipes

1 Rigid joints shall mean joints made solid by caulkling the sockets, or bolting together flanges integral with the pipes. Flexible joints shall mean joints made with deformable rings or gaskets held between pipe spigots and sockets, sleeves or collars.

2 Joints in surface water drains shall be watertight complying with sub-Clause 3 of this Clause or partly watertight complying with sub-Clause 4 of this Clause as described in Appendix 5/1. Foul drains shall have watertight joints. Filter drains shall have joints complying with sub-Clause 6 of this Clause. Ducts need not have watertight joints unless otherwise described in Appendix 5/2.

3 (05/01) Watertight joints shall comply with the appropriate British Standards, the manufacturer’s instructions and the following:

(i) Rigid joints shall be used only where permitted in Appendix 5/1. Spigots and sockets of rigid joints may be caulked with tarred rope yarn or equivalent and the socket completely filled with mortar designation (i) complying with Clause 2404, excluding lime; a fillet of mortar being worked around the socket extending for a length of not less than 50 mm from the face of the socket. Iron pipes with open sockets shall have rigid joints caulked with lead wool or equivalent.

(ii) Joints in PVC-U pipes shall not be made with plastic solvent.

(iii) Flexible mechanical joints may be used with surface water pipes complying with BS 65.

(iv) (11/03) Joints for cast iron pipes to BS 437 shall comply with BS EN 877.

(v) Joints in thermoplastics structured wall pipe shall comply with Clause 518.

4 (05/01) Partly watertight joints for surface water drains shall be tested in accordance with sub-Clause 509.7 and shall be British Standard joints or non-British Standard joints. Push fit joints shall have a register to ensure that the pipe is fully pushed into the joint.

Corrugated steel pipes of lock seam fabrication, not exceeding 900 mm internal diameter, shall be joined in accordance with the manufacturer’s instructions. Bolted segmental plate pipe arches or circular pipes, not exceeding 900 mm internal diameter, shall be joined in accordance with sub-Clause 501.6 (iv) and the manufacturer’s instructions.

5 Where a concrete bed, cradle, arch or surround is used with rigid pipes having flexible joints, joint filler board complying with Clause 1015 shall be placed in contact with the end of the socket at a pipe joint and shall extend through the full thickness of the concrete in contact with the pipe. Such joints in the concrete bed, haunch or surround shall be at intervals not exceeding 5 metres except where the spacing of joints in the pipe exceeds 5 metres when they shall be at each pipe joint.

6 (05/01) Joints in pipes for filter drains shall comply with the appropriate British Standard and with the following:

(i) Non-porous and unperforated concrete and clay pipes with spigot and socket, rebated or ogee joints shall be laid with unsealed joints and with a gap of 10 mm between the end of the pipe and the inner end of the socket or rebate. The pipes shall be supported with tarred rope yarn or equivalent flexible jointing material within the sockets over the lower third of the circumference so that there are no vertical steps between one pipe and another. Such pipes shall only be used with Type B filter material as described in Clause 505.

(ii) The ends of perforated, castellated or porous concrete pipes with rebated joints and perforated clayware pipes with rebated or with flexible sleeve joints shall be pushed tightly together. The width of slots measured along the length of the pipeline formed by
jointing castellated pipes shall not exceed 10 mm.

(iii) Perforated or slotted thermoplastics pipes with spigots and sockets or sleeves may be dry-jointed or jointed as described in sub-Clauses 3 and 4 of this Clause.

(iv) Other perforated pipes shall be jointed as unperforated pipes of the same material.

7 Joints in pipes for service ducts shall comply with the appropriate British Standard and with the following:

(i) Pipes for ducts shall be jointed so that no silt, grit, grout or concrete surround is able to enter the duct. Pipes with push-fit joints shall have a register to ensure that the pipe is fully pushed into the joint.

(ii) Joints in pipes to BS 3506 or BS 3505 shall comply with BS 4346 : Part 2.

505 Backfilling of Trenches and Filter Drains

1 Backfilling shall be undertaken immediately after the required operations preceding it have been completed.

2 Except where otherwise described in Appendix 5/1, trenches other than filter drain trenches shall be backfilled above the pipe surround material described in Clause 503, with Class 1, 2, or 3 general fill material complying with Series 600.

3 (05/01) Filter drains shall be backfilled as described in Appendix 5/1 with Type A, Type B or Type C filter material which shall:

(i) (11/03) be well graded (except for Type B which shall be uniformly graded) and comply with the requirements of Table 5/5 when determined by the washing and sieving method of BS EN 933-1;

(ii) be non-plastic when tested in accordance with BS 1377 : Part 2;

(iii) (11/03) the resistance to fragmentation of coarse aggregate in accordance with clause 5.2 of BS EN 13242 shall be LA50;

(iv) (11/03) meet the sulfate requirements described in sub-Clauses 503.3(i)(b), (c) and (d).

Filter materials, when tested in accordance with sub-Clause 509.8 shall have permeability requirements as described in Appendix 5/1.

When Type A material is used with pipes other than porous pipes at least 15% of the material shall be larger than the diameter of hole or larger than 1.2 times the width of slot in the pipe.

4 Backfilling shall be deposited and compacted in compliance with Clause 612. Filter material for filter drains shall be deposited in layers not exceeding 225 mm loose depth; each layer being compacted in compliance with Table 6/4 Method 3.

5 Material shall be deposited in even layers and shall not be heaped in the trench before being spread. Spreading and compaction shall be carried out evenly without dislodging, distorting or damaging the pipe. Power rammers shall not be used within 300 mm of any part of the pipe or joint.

TABLE 5/5: (11/03) Grading Requirements for Filter Drain Material

<table>
<thead>
<tr>
<th>Percentage by Mass Passing Sieve</th>
<th>Sieve Sizes (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63 37.5 20 10 4 1 0.5 0.125</td>
</tr>
<tr>
<td>Type A</td>
<td>100 85-100 50-100 35-90 15-50 5-35 0-5</td>
</tr>
<tr>
<td>Type B</td>
<td>4/40 G, 85/15 to BS EN 13242</td>
</tr>
<tr>
<td>Type C</td>
<td>As described in Appendix 5/1</td>
</tr>
</tbody>
</table>

6 Except in carriageways, other paved areas and locations described in Appendix 5/1, backfill of trenches shall be brought up to ground level. Where topsoil is at the surface on the line of the trench the upper section of the backfill shall be topsoil of the thickness described in Appendix 6/8, or of the same thickness and quality of topsoil as the surrounding ground where no thickness is specified. For trenches in carriageways or other paved areas the backfill shall be brought up to formation level, or sub-formation level where capping is required, unless a lower level is described in Appendix 5/1. Sheeting and other excavation supports shall be removed as the filling proceeds unless otherwise described in Appendix 6/3.

7 The position of service ducts shall be marked when the trenches are backfilled and permanent marker blocks and location posts provided as described in Appendix 5/2.
506 Connecting to Existing Drains Chambers and Channels

1 Where described in Appendix 5/1, existing drains shall be extended, connected and jointed to new drains, chambers or channels. All such connections shall be made during the construction of the new drain or other work and their positions recorded by the Contractor who shall hand to the Overseeing Organisation a copy of the record of the connections made the previous day. Where pipe connections are made to existing brick concrete or stone drains, chambers or channels, the pipes shall be well and tightly built into the concrete, brick or masonry work and be so placed as to discharge at an angle not greater than 60° to the direction of flow of the drain or channel and with the end of the pipe carefully cut to the necessary angle. Where the connections are between pipe drains, special connecting pipes shall be laid and jointed as described in Appendix 5/1.

2 Before entering or breaking into an existing sewer or drain, the Contractor shall give notice of his intention to do so to the authority responsible for the pipeline to which the connection is to be made.

3 (11/03) Existing drains no longer required shall, as required by Appendix 5/1, be sealed with ST2 concrete, in compliance to Clause 2602, or removed and replaced with general fill material complying with Clause 601 and Table 6/1 and compacted in compliance with Clause 612, or grouted with a 1:10 cement: pfa mix. The grout shall use the minimum quantity of water to ensure the fluidity necessary to render it capable of being pumped to the ends of the pipe. It shall be used within one hour of mixing but when the mix contains a retarding admixture this time may be extended in accordance with the manufacturer’s instructions. The cement shall comply with BS 12 and the pulverised-fuel ash (pfa) with BS 3892 : Part 2, fineness to Zone B and sulfate content not exceeding 1.5%.

507 (05/01) Chambers

1 (11/03) Chambers, other than those used in motorway communications installations, shall include manholes, catchpits, inspection chambers, draw pits and walled soakaways. Chambers shall be of the type specified in Appendix 5/1, constructed in accordance with HCD Drawing Numbers F3 to F12 and F25 to F27 as appropriate to that type. Chambers for use in motorway communications installations shall comply with Series 1500. All ST concrete referred to in this Clause shall comply with Clause 2602, unless otherwise described in Appendix 5/1.

2 (11/03) Foundations to chambers shall be of ST4 concrete. Channels for chambers shall be formed and finished smooth in the foundation concrete or constructed of preformed half circle channels, with sides benched in ST4 concrete, or mortar designation (i) complying with Clause 2404 excluding lime. Alternatively for inspection chambers not exceeding 1.3 metres in depth to invert, complete plastics units or other units in equivalent material surrounded by 150 mm of ST4 concrete may be used.

3 Brickwork shall comply with Series 2400 and be built with mortar designation (i) in English bond. The joints of brickwork where exposed shall be finished as specified for unpointed joints in Clause 2412. The ends of all pipes shall be neatly built into the brickwork and finished flush with mortar designation (i).

5 (11/03) Corrugated galvanized steel chambers shall comply with Clause 501 with in situ ST4 concrete invert and precast concrete cover slabs complying with BS 5911 : Part 200 and the particular requirements described in Appendix 5/1. They shall be surrounded with well graded granular material Class 6M as described in Table 6/1 compacted in accordance with Clause 612.

6 Where the depth of invert of chambers, excluding inspection chambers, exceeds 900 mm below the finished surface of the carriageway or the adjacent ground, manhole steps complying with BS 1247 : Part 1 or Part 2 shall be built in as specified in BS 5911 : Part 200. Steelwork used for ladders, handholds and other fittings shall comply with BS 970 : Part 1 and be galvanized in compliance with Clause 1909 after fabrication. Threaded components shall be galvanized in compliance with Clause 1909.

7 (11/03) Excavation around chambers, except those described in sub-Clause 5 of this Clause, shall be backfilled with general fill material as described in Table 6/1 and compacted in compliance with Clause 612. Where mechanical compaction is impracticable, the excavation shall be backfilled with ST2 concrete. Where there are precast concrete access shafts to precast concrete chambers, the shafts shall be surrounded by a minimum thickness of 150 mm of ST4 concrete, and the remaining excavation backfilled with general fill material as described in Table 6/1 compacted in compliance with Clause 612.

8 Chambers for foul drains shall be tested for watertightness as and where required in Appendix 5/1.

9 Chamber covers, gratings and frames shall be as described in Appendix 5/1 and shall comply with BS EN 124 and sub-Clauses 10 and 15 of this Clause.
10 Class D 400 units and above shall incorporate a permanent non-rock feature either triangular point suspension or machined faces.

11 (11/03) Bolts supplied for loosely coupling separate sections of covers and gratings shall be steel hexagon headed, complying with the requirement of BS EN ISO 4016, BS EN ISO 4018 and BS EN ISO 4034 and be galvanized in compliance with Clause 1909. They shall not be less than size M16 complete with hexagon nut and shall be provided with means to prevent undue tightening of unit sections.

12 Unless otherwise specified in Appendix 5/1, all covers, gratings and frames shall be supplied in a fine cast (uncoated) condition. Where a coating is specified in Appendix 5/1, the coating shall only be applied when the surfaces of the casting are clean, free from rust and dry.

13 Requirements for special duty covers for use in carriageways shall be as described in Appendix 5/1.

14 Gratings for catchpit chambers shall have a minimum waterway area as described in Appendix 5/1.

15 Two sets of lifting keys shall be delivered to the Overseeing Organisation for each type of cover supplied. At least two keyways, as detailed on HCD Drawing No. F17, shall be provided in each complete cover, one in each segment for segmental covers. A recess for a prising bar shall be incorporated in manhole covers unless other means of loosening the cover from the frame are provided.

16 Frames for chamber covers and gratings shall be set in cement mortar designation (i) complying with Clause 2404 or a proprietary quick setting mortar of equivalent strength.

17 For all pipelines except those constructed with corrugated pipes the nearest joint to any chamber shall be not more than 500 mm from the inner face of the wall and shall not be restricted by any concrete. Between this and the next joint, the length of the articulated pipe shall be in accordance with Table 5/6.

TABLE 5/6: Length of Articulated Pipe

<table>
<thead>
<tr>
<th>Nominal Pipe Diameter (mm)</th>
<th>Length of Pipe (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>450 and less</td>
<td>500 to 750</td>
</tr>
<tr>
<td>Greater than 450</td>
<td>750 to 1000</td>
</tr>
</tbody>
</table>

18 Where the adjustment or replacement of existing frames and covers or gratings is required, the units shall be taken up and re-fixed or removed and replaced with new units complying with sub-Clauses 9 to 15 of this Clause, or as described in Appendix 5/1. On taking up or removal of the unit, any concrete or mortar bedding shall be broken out and the surface prepared. Where existing frames and covers or gratings are to be adjusted, the Contractor shall take up the unit and clean it for re-use. The adjusted or replaced units shall be laid on a mortar bed complying with sub-Clause 16 of this Clause. The finished thickness of the mortar bed shall be between 10 mm and 25 mm. Where required in Appendix 5/1, covers and gratings shall be bedded using a proprietary quick setting high strength mortar. Details of such mortar shall be to the approval of the Overseeing Organisation. Unless otherwise described in Appendix 5/1, adjusted or replaced frames and covers or gratings shall be set flush with the new surface. Any additional adjustments shall be by modifying the brickwork in compliance with sub-Clause 507.3 or by using a frame of a suitable depth. On completion of the works, each cover shall be lifted and the frame and seating cleaned.

#508 Gullies and Pipe Junctions

1 (11/03) Gullies shall be trapped or untrapped as described in Appendix 5/1 and be in accordance with HCD Drawing Numbers F13 and F14. All ST concrete referred to in this Clause shall comply with Clause 2602 unless otherwise described in Appendix 5/1.

2 Gullies shall be constructed so that no part of the spout or trap has a cross-sectional area less than 2/3rd that of the outlet. The depth of water seal in trapped gullies shall be not less than 50 mm.

3 (11/03) Precast concrete gullies shall comply with BS 5911 : Part 230 and clay gullies with BS EN 295. In situ concrete gullies shall be as described in Appendix 5/1 and constructed of ST4 concrete of 150 mm minimum thickness, using permanent or removable shuttering. Where in situ concrete gullies are formed with permanent shuttering, such shuttering shall have a current British Board of Agrément Roads and Bridges Certificate.

4 Gully gratings, kerb type gully covers and frames shall comply with BS EN 124 and the following and shall be of the classes and sizes described in Appendix 5/1.

5 (05/01) The upper surface of gully gratings shall be flat except where otherwise described in Appendix 5/1. Slots in gratings or between gratings and frames shall not be orientated parallel to the direction of traffic except where the slots are less than 150 mm long or less than 20 mm wide. Minimum waterway areas shall be as specified in Appendix 5/1. Unless otherwise specified in Appendix 5/1, all gratings and frames shall be supplied in a fine cast (uncoated) condition. Where a coating is specified in Appendix 5/1, the coating shall only be applied when the surfaces of the casting are...
clean, free from rust and dry. Frames shall be bedded on mortar complying with sub-Clause 507.16. Brickwork shall comply with sub-Clause 507.3.

6 (11/03) Backfilling to precast gullies shall be carried out up to sub-formation level with general fill material Class 1, as described in Table 6/1 compacted in compliance with Clause 612. Where mechanical compaction is impracticable, the backfilling shall be in ST2 concrete. The remainder of the backfilling shall be in appropriate capping and road pavement materials except that where mechanical compaction of capping or granular sub-base is impracticable ST2 concrete shall be used.

7 (11/03) Gully connection pipes shall be either flexible or rigid not exceeding 0.7 m in length with flexible joints for a distance of 2 m from the gully and shall be in accordance with sub-Clause 507.17 when entering chambers. Junction pipes shall be manufactured of the same type and class of material as the remainder of the pipes in the run. Junction pipes which are laid and not immediately connected, shall be fitted with temporary stoppers or seals and the position of all such junctions shall be clearly defined by means of stakes or tracing wires properly marked or labelled. Saddles may be used to form junctions only where permitted in Appendix 5/1. No internal projections greater than 5 mm will be permitted. Saddles for asbestos cement and plastics pipes shall be installed in accordance with the manufacturer’s recommendations. Saddles with clay pipes shall be jointed with mortar designation (i) complying with Clause 2404, excluding lime. Saddles and pipes shall be surrounded with ST2 concrete.

8 (05/01) Where the adjustment or replacement of existing frames and gratings is required, the units shall be taken up and re-fixed or removed and replaced with new units complying with sub-Clauses 4 and 5 of this Clause, or as described in Appendix 5/1. On taking up or removal of the unit, any concrete or mortar bedding shall be broken out and the surface prepared. Where existing frames and covers or gratings are to be adjusted, the Contractor shall take up the unit and clean it for re-use. The adjusted or replaced units shall be laid at a level, unless otherwise described in Appendix 5/1, 6 mm below the adjoining road surface on a mortar bed complying with sub-Clause 507.16. The finished thickness of the mortar bed shall be between 10 mm and 25 mm. Where required in Appendix 5/1, covers and gratings shall be bedded using a proprietary quick setting high strength mortar. Details of such mortar shall be to the approval of the Overseeing Organisation. Any additional adjustment shall be made by modifying the brickwork in compliance with sub-Clause 507.3 or by using a frame of suitable depth. On completion of the works, each grating shall be lifted and the frame and seating cleaned.

509 Testing and Cleaning

1 Drains required in Appendix 5/1 to have watertight joints shall be tested as described in Appendix 1/5 in sections, eg. between chambers, by means of the air test described in sub-Clause 2 of this Clause. If a pipeline is rejected because of a failed air test, as part of the rectification work, a water test as described in sub-Clause 3 of this Clause may be carried out as an alternative acceptability test. Before testing, the ends of the pipeline to be tested, including those of short branches, shall be plugged and sealed.

2 For the pipeline air test, air shall be pumped in by suitable means until a stable pressure of 100 mm head of water is indicated in a U-tube connected to the system. The air pressure shall not fall to less than 75 mm head of water during a period of 5 minutes without further pumping, after an initial period to allow stabilization. Drains with traps shall be tested to 50 mm head of water and the permissible loss shall then be no more than 13 mm head of water in 5 minutes without further pumping after the initial stabilising period.

3 For the pipeline water test, the pipes shall be filled with water under a head of not less than 1.2 m above the crown of the pipe at the high end and not more than 6 m above the pipe at the low end. Steeply graded pipelines shall be tested in sections so that the above maximum is not exceeded. The test shall commence not less than two hours after filling the test section at which time the level of water at the vertical feed pipe shall be made up to produce the required 1.2 m minimum test head. The loss of water over a 30 minute period shall be measured by adding water at regular 10 minute intervals to restore the original water level and recording the amounts so added. The drain will have passed the test if the volume of water added does not exceed one litre per hour per linear metre of drain per metre of nominal internal diameter.

4 (05/01) All pipelines less than 350 mm diameter, excluding service ducts shall be checked by drawing through each completed length of pipe a spherical mandrel of a diameter 10% less than the nominal bore of the pipes being tested.

5 (11/03) During the progress of the Works all existing chambers, gullies and rodding eyes shall be kept clean and free from obstruction. On completion of the whole of the Works, all chambers, gullies and drains including verge/surface water drains and french surface water drains but excluding all fin and narrow filter drains shall be flushed from end to end with water and left free from obstructions.

Unless otherwise required in Appendix 5/1 foul drains shall be surveyed by a video camera and a recording supplied to the Overseeing Organisation. Catchpit chambers shall be left clean and free from silt.
However, where CCTV survey work of existing drain is required, this work shall be carried out in accordance with the relevant requirements of Series 9000 (MCHW 5.9).

6 The pipes and filter material of filter drains shall at all times be left clean and free from silt and obstruction.

7 Where described in Appendix 1/5, samples of one or more partly watertight joints for pipelines up to and including 900 mm diameter shall be tested with a head of water kept level with the crown of the pipe. The joint will not be accepted if the flow through the joint in litres per minute exceeds 20 times the square of the nominal internal diameter of the pipe in metres.

8 Permeability tests shall be as described in Appendix 5/1.

9 (05/01) Service ducts shall be checked by drawing a wooden mandrel, as shown on HCD Drawing Number I2, through as the ducts are laid but where a set has to be given to the line of ducts the wooden mandrel shall be replaced by an iron mandrel 250 mm long but of the same diameter as the wooden version.

510 Surface Water Channels and Drainage Channel Blocks

1 Surface water channels and drainage channel blocks shall be constructed as described in Appendix 5/3.

2 Surface water channels shall comply with Clause 1103.

3 Drainage channel blocks shall comply with Clause 1101.

511 Land Drains

1 (11/03) Existing land drains which are permanently severed by the Works shall be located and connected into a new drain, pipe or ditch all as described in Appendix 5/1. The lengths remaining within the Works shall be cleaned out from the new drain trench face as necessary. Any pipe disturbed by the Works shall be re-laid to ensure a free discharge into the new drain. Disused ends of intercepted land drains shall be adequately sealed with ST2 concrete in compliance with Clause 2602.

2 Where an existing land drain is exposed and severed by temporary trench excavation, the Contractor shall mark the position of the drain and record it. The drain shall be diverted into an existing drain or watercourse. Alternatively, the normal functioning of the drain shall be continued by the construction of a pipeline or channel adequately supported across the excavation, until permanent restoration is made on the original line.

3 The Contractor shall notify the Overseeing Organisation of any land drain which is blocked or is otherwise defective when the drain is first exposed.

4 Severed mole drains shall be led straight into new drains; alternatively they shall where required in Appendix 5/1 be intercepted by the construction of a land drain. Where they have been disturbed mole channels shall be cleaned out and filled locally with Type A filter material or as otherwise described in Appendix 5/1.

512 Backfilling to Pipe Bays and Verges on Bridges

1 (11/03) Unless otherwise described in Appendix 5/1, filling to pipe bays and verges on bridges shall be well graded granular material not exceeding 20 mm size containing not more than 3% of material passing the 0.063 mm sieve and with a uniformity coefficient of more than 5. It shall be laid and compacted in compliance with sub-Clause 505.4 and 5. The material shall meet the sulfate requirement described in sub-Clause 503.3.

513 Permeable Backing to Earth Retaining Structures

1 Unless otherwise described in Appendix 5/1, permeable backing shall consist of one of the following materials except when the filling adjacent to the structure is selected cohesive material (Class 7A), selected conditioned pulverised-fuel ash (Class 7B) or chalk:

(i) A minimum thickness of 300 mm of granular material complying with the requirements of Clause 505 for Type A or Type C material and, in addition, satisfying the following criteria:

\[
\frac{15 \text{ per cent size of the drainage material}}{85 \text{ per cent size of the backfill material}} \leq 5
\]

Permeability ratio, defined as

\[
\frac{15 \text{ per cent size of the drainage material}}{15 \text{ per cent size of the backfill material}} \geq 5
\]

where the per cent size of a material is the size of particle corresponding to the given per cent ordinate of the particle size distribution graph.

(ii) Porous no-fines concrete, cast in situ 225 mm thick complying with the requirements of Clause 2603.
(iii) Precast hollow concrete blocks complying with the BS 6073 : Part 1 laid in stretcher bond with dry joints in 225 mm thick walling with holes vertical.

2 (11/03) When the filling adjacent to the structure is selected cohesive material (Class 7A), selected conditioned pulverised-fuel ash (Class 7B) or chalk, the permeable backing shall be a minimum thickness of 300 mm of 0/4 or 0/2, CP or MP, sand complying with BS EN 12620 unless otherwise described in Appendix 5/1.

514 Fin Drains

General

1 Fin drains shall comply with this Clause and the special requirements described in Appendix 5/4.

The terms thickness, width, height and core shall have the meanings indicated on HCD Drawing Number F18 unless otherwise described in Appendix 5/4.

The term fin drain shall mean a planar geocomposite structure designed to perform the same function as a narrow filter drain.

2 Where fin drains are designed for lateral entry of water from one side only the requirements for flow rates in sub-Clauses 4 and 5 of this Clause shall apply to the face or plane designed to admit or transmit water.

3 The materials of which the drain is made shall be treated so that they are protected from the deleterious effects of short term exposure to ultraviolet light, and shall be resistant to degradation by acids, alkalis, common chemicals, bacteria, fungi and moulds occurring in soils and highway construction materials. After exposure to ultraviolet light the Overseeing Organisation may require evidence that the materials still comply with the requirements of this Clause. The drain shall be protected from damage and ultraviolet light and be labelled to identify the grade and manufacturer or supplier. Where necessary, the side intended for entry of water and the direction of in-plane flow shall be identified.

Geotextile

4 The geotextile shall:

(i) (11/03) in both machine and cross-machine directions, sustain a tensile load of not less than 5.0 kN/m at break and have a minimum failure strain of 10% when determined in accordance with BS EN ISO 10319;

(ii) (11/03) have a minimum puncture resistance of 1200 N when determined in accordance with BS EN ISO 10319;

(iii) (11/03) have a minimum tear resistance of 200 N when determined in accordance with ASTM Standard D4533-91(1996);

(iv) have a size distribution of pore openings such that the apparent opening size O₉₀ when determined in accordance with BS 6906 : Part 2, or other appropriate test, is as stated in Appendix 5/4;

(v) allow water to flow through it, in either direction, normal to its principal plane at a rate of not less than that stated in Appendix 5/4 under a constant head of water of 100 mm and a maximum breakthrough head of 50 mm when determined in accordance with BS 6906 : Part 3.

Composite Drain

5 (05/01) The composite drain shall:

(i) have a flow rate through each face of the drain of more than 75% of the value specified in sub-Clause 4(v) of this Clause on the side or sides where inflow occurs. This value may be found by either:

(a) direct measurement of the composite drain using a modified version of BS 6906 : Part 3; or

(b) calculation based on the flow rate obtained by the standard test in BS 6906 : Part 3 and the percentage contact area of the drainage core obtained from sub-Clause 13 of this Clause or other appropriate method;

(ii) have values of long term in-plane flow rates as stated in Appendix 5/4 when determined in accordance with sub-Clauses 14 and 15 of this Clause. The values of hydraulic gradient and minimum applied stresses shall be as given in Table 5/7.

TABLE 5/7: (05/01) Applied Stresses (kN/m²) and Hydraulic Gradient

<table>
<thead>
<tr>
<th>HCD Drain Type</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-Clause 14:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Stress</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Shear Stress</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Sub-Clause 15:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Stress</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Sub-Clause 15:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Gradient</td>
<td>1.0</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

Amendment - November 2003
Joints

6 Fin drains shall be capable of being jointed longitudinally or laterally into pipe systems or chambers for inflow and outflow purposes and be self jointing either directly or through purpose made attachment pieces for forming continuous drain lengths. All such joints shall be formed so as to prevent the ingress of soil particles or other extraneous material into the drain.

Fin drain joints transverse to the direction of flow shall have values of in-plane flow rates not less than that required by sub-Clause 5(ii) of this Clause.

Fin drain joints parallel to the direction of flow and any exposed edges shall be protected from the ingress of soil by a geotextile wrapping with a minimum overlap of 150 mm.

Pipes

7 (05/01) For drain Type 6 pipes shall be perforated or porous and comply with sub-Clause 501.3. Pipes complying with BS 4962:1989 shall have a minimum Ultimate Pipe Stiffness (STES) value of 1400 N/m².

For drain Type 7 pipes shall be unperforated thermoplastics pipe complying with BS 4660, BS 5481, BS EN 1401, BS EN 1852-1 or prEN 12666-1 slotted longitudinally along the top surface and stress relief treated (if required) in accordance with the system manufacturer’s published specification.

8 (05/01) Pipe joints shall comply with the requirements of the relevant British Standard for the pipe used or Clause 518.

Backfill and Surround Material

9 Pipe surround material for drain Types 6 and 7 shall comply with sub-Clause 503.3(i) or 503.3(ii) or Type A or C material complying with sub-Clause 505.3.

Where fin drains are installed in a trench backfill material shall be the original as-dug material from the trench unless otherwise specified in Appendix 5/4.

Dimensions

10 (11/03) Unless otherwise described in Appendix 5/4 the dimensions of the fin drain shall be as shown on HCD Drawings F18 and F21. The pipe diameter shall be as stated in Appendix 5/4. The drain slope angle (x), as shown on Drawing F19, shall be not greater than 15% from the vertical unless otherwise stated in Appendix 5/4.

Installation and Handling

11 Installation of fin drains shall be as shown on HCD Drawing Numbers F19 to F21. Where fin drains are assembled on site the assembly area shall be clean and dry and free of wind-borne pollutants. Any material which becomes contaminated must be replaced. No geotextile or core material shall be exposed to daylight (or any source of ultraviolet radiation) for a period exceeding a cumulative total of 50 hours. Any geotextile or core material exposed to daylight (or any source of ultraviolet light) for a period exceeding a cumulative total of 50 hours shall be replaced unless it can be demonstrated that the materials of the drain still comply with the requirements of this Clause.

Where fin drains are laid in trench, the trench bottom shall be free of irregularities and to the required levels given in Appendix 5/4. Rock and other hard protuberances shall be removed and any excess cut in the trench bottom filled and compacted back to the required grade with suitable excavated or imported material.

The drain shall be laid with the appropriate face against the side of the trench adjacent to the carriageway and in the appropriate direction. This side of the trench shall have walls sufficiently clean to enable the fin drain to come into close contact with the wall when the trench is backfilled and compacted. Compaction shall be in accordance with Clause 612. Fin drains installed as part of the Permanent Works shall be protected from surface water, contamination, and accidental damage during construction.

The fin drain, pipe surround and backfill shall be installed so as to cause no damage to the fin drain. Where any damage does occur, the damaged materials shall be replaced by new material.

After the installation of the fin drain has been completed a marker tape shall be laid approximately 75 mm above the fin drain in the position shown on HCD Drawing Numbers F19 and F20. The tapes shall be green self-coloured PVC or polythene plastic not less than 0.1 mm thick and 150 mm wide.

Identification

12 The Contractor shall obtain and make available the following information for each separate consignment of fin drain delivered to Site:

(i) geotextile and core name, grade/number and mass per unit area;

(ii) names and addresses of system producer, and geotextile, core and pipe manufacturers;
(iii) manufacturing characteristics and constituents of geotextile and core. This shall include composition and type of constituent filaments, threads, fibres, films, tapes and other components;

(iv) consignment number and delivery date;

(v) a copy of the site delivery note.

Test Method for the Percentage Contact Area of Drainage Core

13 (i) The test determines the area of one face of a drainage core which will be in contact with a geotextile filter as a percentage.

(ii) The apparatus required is as follows:

(a) loading device able to apply a compressive load of at least 2 kN and having a flat steel base;
(b) flat steel loading plate 200 mm x 200 mm;
(c) printers ink and roller (or pad);
(d) sheet of thin compressible rubber;
(e) planimeter.

(iii) The test procedure shall be as follows. Cut three representative test specimens 200 mm x 200 mm (±2 mm). Apply ink to one 200 mm x 200 mm face of a specimen and cover with a sheet of plain paper and a thin compressible rubber sheet. Place the prepared specimen in to the loading device and gradually apply the load of 2 kN and maintain for 5 minutes. Release the load and remove the specimen and separate it from the paper. Using the planimeter find the total area of the paper which has received an imprint. Repeat for all specimens.

(iv) The percentage contact area = total area of imprint x 100 area of test specimen

(v) The report shall include:

(a) a reference to this method;
(b) sample identification details;
(c) individual and mean percentage contact areas;
(d) details of any deviation from the specified test procedure.

(vi) Alternative methods of determining the percentage contact area may be employed with the prior approval of the Overseeing Organisation.

Test Method for Determining the Thickness of Fin Drains Under Specified Normal and Shear Stresses

14 (i) (05/01) The test determines the thickness of the fin drain under sustained normal and shear stresses. A long term thickness (at 100,000 hours) is calculated by extrapolation and a short term equivalent normal load which produces the long term thickness is determined.

(ii) The apparatus required is as follows:

(a) a suitable compression testing machine, which shall have a vertical travel at least the nominal thickness of the specimen. It shall be capable of sustaining the necessary loads to within 1% accuracy for the duration of the test;
(b) the compression testing apparatus, which shall include a fixed base plate and parallel moveable top plate with flat steel surface with sufficient friction to permit the development of the required shear forces;
(c) a means of measuring the mean thickness of the specimen to an accuracy of 0.01 mm.

As an alternative to (a) and (b), an appropriate inclined plane and kentledge system may be employed to produce the normal and shear loads.

The test procedure shall be as follows:

(iii) Cut six representative specimens of minimum size 100 mm x 100 mm symmetrically about the core design. Three specimens shall be tested in accordance with (v) below and three in accordance with (vi) below.

(iv) The test specimen shall be placed symmetrically on the base plate and covered by the top plate. The means of measuring thickness shall be attached and the initial thickness measured.

(v) (11/03) Apply the load smoothly and as quickly as possible to the top plate. The full load (normal and shear) shall be applied in less than 20 seconds and sustained for at least 1000 hours. The applied stresses shall be those given in Table 5/7. At least four
measurements of thickness shall be made during each unit of logarithmic time after the first minute. Determine the long term thickness of the specimen as the thickness of the specimen at 1000 hours reduced by 2T where T is the difference in thicknesses of the specimen thickness recorded at 100 hours and 1000 hours. Repeat the test on the two other specimens. The test specimens shall be maintained at a constant temperature of 20°C ± 2°C throughout the test period.

(vi) Apply increasing increments of normal load to the specimen. Determine the short term equivalent load which shall be the load which when applied for a period of 20±5 minutes produces a specimen thickness equal (within an accuracy of ±0.05 mm) to the long term thickness of the specimen obtained at (v) above. Repeat the test on the other two specimens.

(vii) The report shall include:
 (a) a reference to this method;
 (b) sample identification details;
 (c) the initial thickness of the sample;
 (d) the applied load;
 (e) the thickness of each sample at 100 and 1000 hours and the mean of the three results;
 (f) a plot of percentage reduction in thickness against logarithmic time;
 (g) the mean long term thickness;
 (h) the mean short term equivalent load;
 (i) any deviations from the specified test procedure.

Determining In-plane Flow Under Compressive Loading

15 (05/01) In-plane flow shall be determined in accordance with BS 6906: Part 7 except that the following conditions shall apply:

 (a) the applied normal stress shall be the greater of the value given in Table 5/7 (for sub-Clause 15) or the mean short term equivalent stress as determined in sub-Clause 14 (vi) of this Clause;
 (b) the sample shall be tested such that the measured flow (or flows) is in the same direction as the principal flow (or flows) when the fin drain is in service;
 (c) the foam rubber option of the test procedure shall be used (details of the foam rubber to be used may be obtained from the Overseeing Organisation);
 (d) the hydraulic transmissivity shall be reported for each of the hydraulic gradients employed.

Test Methods

16 Notwithstanding the requirements of sub-Clauses 13, 14 and 15 of this Clause, variations in the test methods specified therein shall be made where deemed necessary by the British Board of Agrément following consultation with the manufacturer. All such variations shall be recorded in the report.

Certification

17 Fin drains and constituent materials shall have a current British Board of Agrément Roads and Bridges Certificate certifying the appropriate physical properties when tested in accordance with this Clause.

515 Narrow Filter Drains

General

1 Narrow filter drains shall comply with this Clause and the special requirements described in Appendix 5/4. The term narrow filter drain refers to drain Types 8 or 9 indicated in the HCD Drawing Number F18. They consist of a porous or perforated pipe laid in a narrow trench surrounded by granular material where the granular material and/or the pipe is enclosed by a layer of geotextile filter. Narrow filter drains and fin drains perform the same function.

Materials

2 The geotextile materials used in the drain shall be stored so that they are protected from the deleterious effects of short term exposure to ultraviolet light, and shall be resistant to degradation by acids, alkalis, common chemicals, bacteria, fungi and moulds occurring in soils and highway construction materials. After exposure to ultraviolet light the Overseeing Organisation may require evidence that the materials still comply with the requirements of this Clause. They shall be protected from damage and ultraviolet light and be labelled to identify the grade and manufacturer or supplier.

3 The geotextile used in narrow filter drains shall comply with all requirements of sub-Clause 514.4 for geotextiles used in fin drains.
For drain Type 8 the geotextile surround to the pipe shall consist of a prefabricated continuous close fitting sock. Alternatively the pipe shall be firmly wrapped in a single layer of geotextile with an overlap of between 50 and 75 mm and secured around the pipe in a manner so as to prevent the ingress of soil particles or other extraneous material and without affecting the permeability of the wrapped material. Splices between lengths of sock or layer shall have overlaps within these dimensions and be securely tied.

For drain Type 9 the geotextile surround to the granular material shall have a minimum overlap of 250 mm including 100 mm down-tuck. Splicing of lengths of geotextile shall consist of minimum 600 mm overlap secured with pins or mechanical ties. Where an outlet pipe passes through the geotextile a separate piece of geotextile shall be wrapped round the outlet pipe, flared against the geotextile in the filter drain and secured. Where drain lengths are terminated at chambers, the geotextile shall be secured against the chamber walls by suitable means so as to prevent the ingress of soil particles or other extraneous material into the drain.

Dimensions

6 Unless otherwise described in Appendix 5/4 the dimensions of the narrow filter drain shall be as shown on HCD Drawing No. F18. The pipe diameter shall be as stated in Appendix 5/4. The drain slope angle (x), as shown on Drawing F20, shall be not greater than 15% from the vertical unless otherwise stated in Appendix 5/4.

Installation and Handling

7 Narrow filter drains shall be installed as shown on HCD Drawing Number F20. Before during and after installation the geotextile shall be protected from contamination, damage and exposure to ultraviolet radiation in accordance with sub-Clause 514.11. The excavated trench bottom shall be free of irregularities and to the required levels given in Appendix 5/4. Rock and other hard protuberances shall be removed and any excess cut in the trench bottom filled and compacted back to the required grade with suitable excavated or imported material. Drain Type 9 shall have trench walls sufficiently clean to enable the geotextile to come into close contact with the wall when the granular material is placed inside it. The deposition and compaction of infill shall be in accordance with sub-Clause 505.4 for filter drains. Narrow filter drains installed as part of the Permanent Works shall not be used for the disposal of surface water run-off during construction. Narrow filter drains exposed to surface water ingress shall be temporarily protected.

8 The Contractor shall obtain and make available the information required in sub-Clause 514.12 in respect of the geotextile and pipe.

Certification

9 The geotextile shall have a current British Board of Agrément Roads and Bridges Certificate certifying the appropriate physical properties when tested in accordance with this Clause.

TABLE 5/8: (11/03) Narrow Filter Drain: Trench Infill Grading Requirements

<table>
<thead>
<tr>
<th>HCD Drain Type</th>
<th>Maximum Particle Size mm</th>
<th>D5 Size mm</th>
<th>D15 Size mm</th>
<th>D85 Size mm</th>
<th>Uniformity Coefficient (C_u) D60/D10</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>40</td>
<td>>0.125</td>
<td>As stated in Appendix 5/4</td>
<td>-</td>
<td>5 to 12</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>>0.125</td>
<td>-</td>
<td>> Hole Diameter or 1.2 Times Width of Slot in Pipe</td>
<td>5 to 12 or if C_u <5 D5 > 1 mm</td>
</tr>
</tbody>
</table>

Dn = Sieve size passing n% by weight of material

516 Combined Drainage and Kerb Systems

1 (05/01) The Contractor shall design the combined drainage and kerb systems listed in Appendix 1/11 in accordance with the design requirements given in Appendix 5/5.

Where in Appendix 5/5 the strength requirements of the system are described as Class D or Class C, the system...
shall comply with the requirements of sub-Clause 517.20 except that:

(i) the load testing procedure described in sub-Clause 517.20 (ii) shall be carried out using the test blocks as detailed in Table 1 of Appendix 5/5; and

(ii) precast systems shall be considered acceptable when the crack width described in sub-Clause 517.20 (iii) is less than 0.2 mm.

2 Combined drainage and kerb systems shall permit lateral entry of surface water either continuously or at intervals not exceeding 1 m.

3 (05/01) When used adjacent to porous asphalt surfacing materials, units shall incorporate side entry inlets to permit drainage of water held within the porous asphalt. Inlets shall comply with the requirements of Appendix 5/5 and shall have the capacity to drain porous asphalt.

4 Combined drainage and kerb systems shall be suitable for their intended application in the Works. The Contractor shall provide evidence of such suitability for the purpose to the Overseeing Organisation.

5 Proprietary systems shall be laid and jointed in accordance with the manufacturer’s written instructions.

6 Adjacent carriageway, footway, verge or central reserve construction shall not take place within 3 days of any bedding, backing, surrounding or jointing of combined drainage and kerb units.

7 Joints between units and between the channel and units, shall be designed to avoid leakage of surface water. Joints between bridge deck waterproofing and component parts passing through the waterproofing shall be watertight. Sealants shall be compatible with the waterproofing system.

8 (11/03) The system shall be cleaned out by low pressure jetting or other appropriate means on completion of the Works. The system shall be left clean and free from all obstruction.

517 Linear Drainage Channel Systems

General

1 The linear drainage channel systems listed in Appendix 1/11 shall be treated as structural elements and other features to be designed by the Contractor. The linear drainage channel systems shall be designed in accordance with this Clause and with the design requirements in Appendix 5/6. Each linear drainage channel system shall be deemed to include all the linear drainage channel in a single continuous run, together with its associated outlet(s) through which it drains, and with all associated surrounding bedding, haunching and other material. In cases where a single run of linear drainage channel drains from a crown or crowns in opposite directions to two or more separate outlets, that shall be deemed to be a single linear drainage channel system.

2 A linear drainage channel shall comprise a longitudinal sub-surface closed profile hydraulic conduit into which surface water is drained via longitudinal or angled slots situated above the conduit. Construction shall be in either manufactured units or in situ concrete. Channels shall be Class D or Class C within this Clause.

3 Design flows given in Appendix 5/6 shall be accommodated without surcharge within the main channel section and beneath the underside of any inlet slot sections.

4 Width and depth of channel units shall not exceed the dimensions given in Appendix 5/6.

5 Dimensions of inlet slots shall comply with the following criteria:

The width of straight slots orientated along axes between 0° and 45°, also between 135° and 180° to the direction of traffic flow shall be between 10 mm and 32 mm. Slots within these orientations which are less than 18 mm in width shall not be restricted as to their length, but slots greater than 18 mm in width shall not exceed 170 mm in length.

Straight slots orientated along axes between 45° and 135° to the direction of traffic flow shall be between 10 mm and 42 mm in width and shall not be restricted as to their length. Slots in other shapes, eg curved slots, shall be designed such that a 170 mm x 170 mm x 20 mm gauge is unable to enter the slot. A tolerance of ± 0.5 mm shall apply to the gauge dimensions.

These slots shall also have adequate hydraulic capacity in accordance with sub-Clause 17 of this Clause.

6 Linear drainage channel systems shall be set flush with contiguous surfaces falling towards the systems and shall permit entry of surface water from such surfaces. Notwithstanding other tolerances in the Specification, the finished level of the units comprising the system shall not be higher nor more than 10 mm lower than the finished level of the adjacent carriageway.

7 When used adjacent to porous asphalt surfacing materials, units shall also incorporate side entry inlets to permit drainage of water held within the porous asphalt. Inlets shall comply with the requirements of...
Appendix 5/6 and shall have the capacity to drain porous asphalt.

8 Joints between units comprising the system and between adjacent construction and the system shall be designed to avoid leakage of surface water. Joints between bridge deck waterproofing and component parts passing through the waterproofing shall be watertight. Sealants shall also be compatible with the waterproofing system.

9 (11/03) Junctions, connecting pipes and other fittings comprising the linear drainage channel system shall comply with sub-Clause 501.3 and shall be as described in Appendix 5/6.

The linear drainage channel shall incorporate measures to enable rodding of the outfall pipework and adequate access for jetting by water jetting equipment into the system.

10 The system shall be cleaned out in accordance with sub-Clause 516.7.

Manufactured Systems

11 Manufactured systems shall be comprised of either one-piece preformed channel units with a closed profile incorporating a continuous or intermittent longitudinal inlet slot on the top, or alternatively of units with integral or non-integral grating systems.

An integral grating system is a system in which the grating is either:

(a) cast or preformed as part of the channel; or
(b) chemically bonded to the channel base unit by the manufacturer.

A non-integral grating system is one which requires the connection of gratings to channel base units to be made by bolts or other suitable means.

The Contractor shall provide attested and documented evidence to demonstrate the integrity of fixity of all grating systems both for manufactured and in-service conditions.

Non-integral grating systems shall be acceptable with Class C channel systems only and shall not be acceptable with Class D channel systems.

Joints shall be designed to avoid leakage of water, with a smooth transition and with no constriction of the cross-section.

Systems shall be laid, jointed, bedded and haunched in concrete in accordance with the manufacturer’s written instructions.

Adjacent carriageway, footway, verge or central reserve construction shall not take place within 3 days of any bedding, backing, surrounding or jointing of linear drainage units.

In Situ Systems

12 In situ systems shall comply with the requirements of sub-Clauses 1103.1, 1103.3 and 1103.4. They shall also comply with the requirements of sub-Clause 1103.2 except that concrete for in situ systems shall be considered as plain concrete within the terms of this sub-Clause, irrespective of the inclusion of reinforcement.

13 In situ systems shall be slip formed except for sections at gullies which shall be hand formed. Full depth joints shall be constructed at the interface at each side of gullies with a 25 mm thick filler board complying with Clause 1015 and sealed in accordance with Clauses 1016 and 1017.

14 (11/03) The central void may be formed by an inflated tube which is then removed, or by an in situ suitable pipe or similar former fit for the purpose. At gully positions the inner former shall be pre-sleeved with a suitable pipe or similar former fit for the purpose which shall be of sufficient length to overlap the two joints on either side of the gully.

15 The central void shall be checked in accordance with sub-Clause 509.4. Verification of slot widths shall be determined by suitable templates.

16 Reinforcement shall comply with Series 1700. Cover to reinforcement shall be not less than 75 mm.

Hydraulic Capacity

17 The following hydraulic design criteria shall apply:

(i) The top slots required in sub-Clause 5 of this Clause shall be capable of taking 100% of the design run-off over the relevant area.

(ii) In cases where side-entry inlets are required under sub-Clause 7 of this Clause, these shall comply with requirements of Appendix 5/6. The top slots shall also separately comply with the requirements of sub-Clause 17 (i) above.

(iii) Flows from the systems shall be discharged into the chambers as shown on the Drawings. The Contractor shall provide full details of proposed connection pipes and fittings to discharge flows from the systems into the chambers.

(iv) The Contractor shall provide calculations to demonstrate the adequacy of his design and these shall include the following information:

Amendment - November 2003
(a) flow calculations;
(b) hydraulic cross sections of the units;
(c) roughness coefficient of the units;
(d) design flows and in-bore flow capacities of the system at each outfall position;
(e) capacities of the outfall connections from the system at each outfall position.

Dimensions

18 The tolerance on the cross section dimensions shall be within 2% of the required profile dimension but slot widths shall be within the limits specified in sub-Clause 5 of this Clause.

Internal dimensions of the waterway channel section shall not be less than 100 mm, measured in any direction.

Channels may be of constant depth, or constructed with an in-built gradient to the channel which, if incorporated, shall be at not less than 0.5%. The depth shall not exceed the maximum depth, if any, specified in Appendix 5/6.

A system may comprise channels of different constant depths, but all invert steps in such systems shall be accommodated by purpose built transition channels or fittings to provide a smooth continuity of invert.

Materials

19 Channel units shall be manufactured from any of the following materials:

(i) reinforced or unreinforced concrete;
(ii) synthetic resin concrete;
(iii) fibre concrete;
(iv) flake graphite cast iron;
(v) spheroidal graphite cast iron;
(vi) stainless steel.

All materials used shall be suitable for their intended application in the systems, in particular being resistant to surface water, de-icing agents, and the effects of weather, abrasion and absorption. The Contractor shall provide evidence of suitability for such purposes to the Overseeing Organisation. Materials shall comply with relevant standards.

For any materials not covered by relevant standards the requirements of this Clause shall be met and the Contractor shall submit to the Overseeing Organisation proposals for the establishment of any other relevant requirements and testing procedures.

Strength Requirements and Testing

20 Strength requirements and testing shall be as follows:

(i) Channel units Class D and Class C in their in-service condition shall be capable of withstanding a full test load of 400 kN and 250 kN respectively. Gratings and covers for channel units with clear internal waterway conduit widths greater than or equal to 250 mm shall be capable of withstanding the same full test load as the channel unit for their respective Class. Gratings and covers for channel units with clear internal waterway conduit widths of less than 250 mm shall be capable of withstanding a test load (kN) equal to:

\[(\text{full test load applicable to the Class}) \times \frac{\text{clear internal waterway conduit width (mm)}}{250} \]

but not less than 0.6 x full test load.

(ii) The load testing procedure shall be carried out in accordance with this sub-Clause using test blocks as detailed in Table 1 of Appendix 5/6 capable of uniformly distributing the test load over the whole surface of the test block.

(iii) Test pieces, whether manufactured or in situ construction, shall be not less than 500 mm and shall be bedded and secured against lateral displacement in a manner that reflects the in-service requirements and manufacturer’s installation instructions, where applicable. For non-integral grating systems, gratings or covers shall be fitted to the units before testing. They shall be placed on the table of a suitable testing rig with the test load being applied vertically to the geometrical centre of the test piece centrally via a test block as detailed. Allowance may be made for surface irregularities by interposing a layer of soft wood, fibre board, felt, rubber or similar between the applied load and the test piece.

The load shall be steadily increased at a rate of 2 ± 1 kN/s until the test load specified has been achieved. The load shall then be released.

To be considered acceptable the test piece shall show no visible cracks or flaking likely to impair its serviceability except that in the case of steel reinforced concrete or fibre concrete units cracking up to a width not
exceeding 0.2 mm at 67% of the test load is acceptable.

(iv) The test machine shall be capable of applying a load at least 25% greater than the specified test loads. The dimensions of the bed of the test machine shall be greater than the bearing area of the piece to be tested.

(v) For manufactured units the manufacturer shall establish suitable strength tests as part of his quality control procedures. Details of quality control procedures shall be supplied to the Overseeing Organisation.

(vi) Trial lengths and testing of in situ channels shall be undertaken in accordance with BS 5931 : 1980, Sections 6 and 8.6.

(vii) The Contractor shall provide test certificates verifying compliance with this Clause in accordance with the requirements of Appendix 1/5.

518 (05/01) Thermoplastics Structured Wall Pipes and Fittings

General

1 Thermoplastics structured wall pipe shall comply with this Clause and the special requirements described in Appendix 5/1.

The term structured wall pipe shall mean all types of smooth bore pipe except solid wall homogeneous pipe. Typical forms of construction classified as structured wall pipes include: single wall externally structured smooth bore, twin wall, foamed core and spirally wound.

The term fitting shall mean a product used in conjunction with the pipe to form the system but excluding gullies manhole chambers, inspection chambers and access chambers.

Materials

2 The materials from which the pipe and fittings are made, shall be treated so that they are protected from the deleterious effects of short term exposure to ultraviolet light, and shall be resistant to degradation by acids, alkalis, common chemicals, bacteria, fungi and moulds occurring in soil, highway construction materials and highway drainage systems. In addition, the materials from which the pipe and fittings are made, shall not incorporate any additives in quantities sufficient to cause microbiological degradation or to impair the conformity to the chemical, physical and mechanical properties or impact resistance requirements given in sub-Clause 5 of this Clause. The specification of the raw material shall be agreed between the certification body, as defined in sub-Clause 15 of this Clause, and the manufacturer and may incorporate re-processable and/or recyclable material. The agreed specification shall incorporate tolerances for each of the relevant characteristics defined in the appropriate clause of pr EN 13476. The Contractor shall submit to the Overseeing Organisation, prior to commencement of the Works, completed information sheets in accordance with Appendix 5/7.

Dimensions

3 Systems for carrier drainage shall be between 150 mm and 900 mm nominal internal diameter. Pipes for narrow filter drains shall be 110 mm or 150 mm nominal internal diameter. Pipes for service ducts shall have nominal internal diameters of between 50 mm and 150 mm. Pipes for sub-soil drainage shall incorporate slots or holes with a minimum cross sectional area of 1000 mm² per metre run of pipe.

The bore of the pipe and fittings shall be in accordance with the standard tolerances for nominal bores given in BS EN 476.

Appearance

4 (11/03) The system shall have a smooth bore and be free from any burs, flash or other inconsistencies that could have a detrimental effect on the performance of the system. Pipes and fittings for drainage shall be externally coloured either terracotta or black. The colour of ducting pipes shall be in accordance with National Joint Utilities Group Publication No 4. Any variation in the colour shall be described in Appendix 5/2.
Structured Wall Pipe

5 The structured wall pipe shall have the properties defined in Table 5/9.

<table>
<thead>
<tr>
<th>Property</th>
<th>Relevant Standard</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>BS EN ISO 2897-1, BS EN ISO 2897-2 and BS ISO 11922-1</td>
<td>Dimensions to be specified</td>
</tr>
<tr>
<td>Ring stiffness</td>
<td>BS EN ISO 9969</td>
<td>6 kN/m² minimum. Lower stiffness values are permitted if design calculations to BS EN 1295-1 (UK national annex), based on site specific installation conditions, indicate satisfactory performance.</td>
</tr>
<tr>
<td>Creep Ratio</td>
<td>BS EN ISO 9967</td>
<td>PVC-U - maximum 2.5 PP and PE - maximum 4.0</td>
</tr>
<tr>
<td>High volume low pressure jetting</td>
<td>WRe Jetting Test Method</td>
<td>Minimum acceptable failure pressure 137 bar.</td>
</tr>
<tr>
<td>Longitudinal bending</td>
<td>sub-Clause 518.11</td>
<td>Pipes with nominal diameters ≤ 350 mm to have a difference in dimensions when measured in the vertical axis of less than 5% of the pipe length and no local permanent deformation occurs during the test.</td>
</tr>
<tr>
<td>Impact resistance at 0°C</td>
<td>BS EN 1411 with d25 striker of 1 kg</td>
<td>Preliminary test – test 10 pieces as described in BS EN 1411, dropping the striker from a height of 1m. If any test pieces fail, subject the pipe to the full test given in clause 7.3 of BS EN 1411 starting the striker from a drop height of 400 mm. The mean minus 1.64 times the standard deviation must exceed 1m.</td>
</tr>
<tr>
<td>Impact resistance at 23°C</td>
<td>BS EN 1411 with striker as above</td>
<td>Value to be derived from the same batch of pipe as used in the impact resistance test at 0°C. The H₅₀ (mean) value - 10% to be used as the minimum value for quality control testing. Alternatively the 0°C test can be used as a QC test if the manufacturer chooses.</td>
</tr>
<tr>
<td>Rodding resistance</td>
<td>sub-Clause 518.12</td>
<td>Pipes with nominal diameters ≤ 350 mm to have an average failure energy >3 joules</td>
</tr>
<tr>
<td>Static friction coefficient (ducts)</td>
<td>TS 12-24</td>
<td>Pass</td>
</tr>
<tr>
<td>Creep at elevated temperature (ducts)</td>
<td>BS EN ISO 9967</td>
<td>Test to be carried out at 45°C, creep ratio to be less than 2 times the values to BS EN ISO 9967.</td>
</tr>
<tr>
<td>Resistance to point loads (ducts)</td>
<td>sub-Clause 518.13</td>
<td>No perforation at 10% rod travel</td>
</tr>
<tr>
<td>Tensile strength of a seam</td>
<td>BS EN 1979</td>
<td>prEN 13476</td>
</tr>
</tbody>
</table>
Fittings

6 The fittings for use with structured wall pipe shall have the properties defined in Table 5/10.

<table>
<thead>
<tr>
<th>TABLE 5/10: (11/03) Requirements for Fittings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
</tr>
<tr>
<td>General</td>
</tr>
<tr>
<td>Ring stiffness (excluding couplers)</td>
</tr>
<tr>
<td>Rodding resistance</td>
</tr>
<tr>
<td>Strength and flexibility of fabricated fittings</td>
</tr>
<tr>
<td>Impact resistance (drop test)</td>
</tr>
<tr>
<td>Watertightness of fabricated fittings</td>
</tr>
</tbody>
</table>

Pipe and Fittings

7 The pipe and fittings shall have the properties defined in Table 5/11.

<table>
<thead>
<tr>
<th>TABLE 5/11 (11/03) Requirements of the Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
</tr>
<tr>
<td>Leaktightness of joints - diameter distortion (watertight joints)</td>
</tr>
<tr>
<td>Leaktightness of joints - angular deflection (watertight joints)</td>
</tr>
<tr>
<td>Leakage rate from partially-watertight joints</td>
</tr>
<tr>
<td>Resistance to wheel loads</td>
</tr>
</tbody>
</table>
Bedding, Backfill and Surround Material

8 (11/03) All systems shall be installed in accordance with the pipe and bedding combinations given in Advice Note HA 40 (DMRB 4.2.5). Other combinations shall be supported by calculations in accordance with BS EN 1295-1 UK National Annex. Bedding, backfill and surround materials are classified in Clause 503 and Clause 505.

Installation and Handling

9 The bedding, surround and backfill shall be installed so as to cause no damage to the pipes and fittings. Installation of the pipe and fittings, particularly, procedures for preparation and execution of jointing operations, shall be in accordance with the manufacturer’s instructions.

Identification

10 The Contractor shall maintain records with the following information for each separate consignment of structured wall pipe or fittings delivered to Site:

(i) system name, ring stiffness grade/number and size;
(ii) name and address of the system manufacturer;
(iii) consignment number and delivery date; and
(iv) a copy of the site delivery note.

Test Method for Longitudinal Bending

11 (i) The test specimen shall be a six metre length of pipe or the maximum length available from the manufacturer (if less than six metres).

(ii) The apparatus shall include:

(a) two level support blocks at least 250 mm wide and of sufficient height to allow the pipe to sag over its length without touching the ground;
(b) a means of measuring the vertical distance between the pipe at the centre of the span and a fixed point of reference to an accuracy of ±0.5 mm.

(iii) The test procedure shall be as follows:

(a) condition the specimen for at least 1 hour at 23°C ± 2°C;
(b) set the supports at a distance apart equal to the length of pipe minus 500 mm;
(c) place the pipe symmetrically on the supports;
(d) measure the distance between the top of the supports and the fixed point of reference, in the vertical axis through the centre line of the pipe;
(e) after a period of two minutes measure the distance between the underside of the pipe at mid span and the fixed point of reference;
(f) record the difference in readings as a percentage of pipe length.

Test Method for Rodding Resistance (Internal Puncture)

12 (i) The test specimens shall be:

(a) twenty specimens cut from the structured wall pipe, each specimen to be 242 mm to 246 mm in length and a quarter section of the circumference or;
(b) twenty specimens cut from a number of identical fittings.

(ii) The apparatus shall include:

(a) a standard drop weight pipe testing apparatus capable of dropping a tup from a height of 1 m;
(b) a 300g tup which can be varied in 30g multiples with a striker consisting a steel rod 18 mm in diameter with a 9 mm hemispherical end;
(c) a 250 mm x 250 mm box containing dry Leighton Buzzard sand (Garside quarry) such that there is at least 100 mm of sand beneath the test specimen when bedded down.

(iii) Procedure shall be as follows:

(a) mark the intended point on the inside of the pipe on the intersection of the centre lines. With profiled pipes the point of impact shall be at the point nearest the intersection that mid way between the ribs or in the middle of a hollow corrugation;
(b) alternatively mark the intended point of impact on the section of fitting;
(c) condition the test specimens in air at a temperature of 4°C ± 2°C for a period of at least one hour before the test;
(d) locate the box under the drop tube of the impact apparatus;
(e) embed the specimen into the sand using a vibrator with the inner surface exposed and facing upwards;

(f) locate the specimen such that the marked point of impact is under the centre line of the tup;

(g) drop the tup from a height of 1 m on to the inner surface of the specimen within 10 seconds of removing the specimen from the conditioning environment;

(h) examine the specimen for damage. Damage is defined as a puncture or crack of the inner layer. Ductile bending or “whitening” is not considered to be damage;

(i) if the specimen exhibits no damage the next test shall be conducted with a tup of 30 g greater mass. If the specimen does exhibit damage the next test shall be conducted using a tup of 30 g smaller mass;

(j) after having completed the 20 strikes calculate the average of the energies where a pass (no damage) was recorded and the average of the energies where a failure (damage) was recorded, then calculate the average of the two averages.

(iv) The test report shall include:
(a) identification of the samples;
(b) the overall average;
(c) whether or not the specimens were damaged.

Test Method for Resistance to Sharp Objects

13 (i) Test specimens shall be three samples of duct each 300 mm long.

(ii) The apparatus shall include:
(a) a compression testing machine;
(b) a 4.7 mm diameter steel rod with an hemispherical end;
(c) and a 120° steel vee block at least 300 mm long.

(iii) The test method shall be as follows:
(a) condition the test specimens for at least 1 hour at 23°C ± 2°C;
(b) insert the steel rod in the jaws of the moveable platen of the compression testing machine so that the hemispherical end protrudes at least 15% of the nominal pipe diameter;
(c) position the specimen in the vee block and placed directly below the steel rod, for twin-walled pipe the specimen shall be positioned firstly so that the rod strikes on the corrugation or rib, and secondly in the valley (where possible);

(d) set the machine to lower at a rate of 5 mm/min;

(e) allow the rod to travel into the pipe a distance equal to 10% of the nominal internal diameter of the pipe (T_i mm) or until the pipe wall is perforated. When the outer skin of a twin wall pipe is perforated before 10% is attained, the rod travel up to the point of failure shall be recorded (T_f mm) and the rod allowed to travel to the inner wall. The rod travel shall be continued to a total of 10% (ie T_i - T_f) or until complete penetration occurs.

(iv) For each test specimen: pipe size, reference, maximum load and rod travel shall be recorded.

14 Notwithstanding the requirements of sub-Clauses 11, 12 and 13 of this Clause, variations in the test methods specified therein shall be made where deemed necessary by the British Board of Agrément (or equivalent) following consultation with the manufacturer and in agreement with the Overseeing Organisation. All such variations shall be recorded in the report.

Certification

15 Pipes and fittings shall have a current British Board of Agrément Roads and Bridges Certificate (or equivalent) certifying the appropriate physical properties when tested in accordance with this Clause.

519 (05/01) Concrete Bagwork

1 (11/03) ST4 concrete in compliance with Clause 2602 shall be used throughout. The concrete filling to the bags shall have a low workability with a slump of 25 mm.

2 The bags shall be hessian sand bags complying with BS 1214. The size of the bags shall be such that when filled, the dimensions shall be 450 mm x 300 mm x 150 mm. The bags shall be placed in position and shaped to the profile shown on the Drawings by striking with a flat timber board until all faces are flat and all edges square.
3 The finished exposed faces of the bagwork shall not be punctured or torn and no tucked ends shall be visible.

4 Each concrete bag is to be spiked to the one below and the bottom row spiked to the foundation with 10 mm x 200 mm mild steel dowel bars. Where the concrete bags have a concrete backing, alternate rows of bags shall be spiked to the backing concrete with 10 mm x 200 mm mild steel dowel bars at 45 degrees to the horizontal with one dowel per bag in the row.

5 (11/03) Where bagwork forms a headwall, headwall foundations are to be cast against the excavated face and any overdig filled with ST4 concrete.

6 Formed concrete surfaces shall be to Class F1 finish and unformed surfaces to Class U1 finish in accordance with Clause 1708.

7 Where bagwork is provided to protect watercourses, before placing the bags, the banks shall be cut into horizontal steps to provide a suitable foundation and shall be covered in geotextile to the requirements of Clause 609. The bottom course of bags shall be at least 450 mm below the stream bed and all succeeding courses shall be horizontal and all vertical joints shall be staggered in alternate courses. Headers shall be placed at every third bag in alternate courses.

8 The bagwork shall be thoroughly soaked with water upon completion of the construction to saturate the hessian bags.

520 (05/01) The Cleaning of Existing Drainage Systems

1 Where stated in Appendix 5/1, the Contractor shall clean existing drainage systems in accordance with this Clause.

2 The Contractor shall take measures when clearing blocked drains to ensure that adjacent water courses or groundwater via soakaways, will not be contaminated. Contamination includes mud or soil being washed or flushed into streams as well as other more obvious contaminants including diesel fuel, oil and chemicals.

3 (11/03) Initial attempts to clear blocked drains prior to jetting, shall be undertaken by hand rodding and any debris and silt removed by the operation shall be removed off Site. The Contractor shall report any localised blockages that cannot be cleared by rodding to the Overseeing Organisation.

4 (11/03) Where jetting is required in Appendix 5/1 the procedures stated in Clause 521 shall be followed.

Cleaning of Gullies, Catchpits, Soakaways and Oil Separators

5 At each chamber all mud and vegetation in the vicinity of the chamber likely to impede the flow of water shall be removed. After lifting the cover or grating the chamber shall be cleansed of all water, detritus, debris and silt, refilled with clean water to the outlet level, and all covers and gratings replaced and evenly bedded.

6 (11/03) Cleaning of chambers shall be by mechanical means. The vehicle used to clean existing chambers shall be equipped with a 125 mm dia gulley arm with boom jets, an exhauster with a minimum output of 5.95 cum/min and minimum 5455 litres capacity. Sediment, detritus and liquor from the chamber shall not be permitted to discharge into the outlet. This may be achieved either by plugging the outlet during cleaning, or by simultaneous jetting and abstraction of liquor from the chamber using a tanker fitted with low pressure high volume water jets around the boom.

7 Gullies and chambers not cleaned for whatever reason, blocked connections and broken or cracked covers, gratings or frames shall be marked to aid subsequent identification.

8 Oil separators shall be refilled with uncontaminated water following the cleaning operation.

9 (11/03) The Contractor shall dispose of all surplus water, debris and arisings from the works off Site at a licensed tip.

Cleaning or Testing of Piped Drainage Systems and Subway Drainage Channels

10 (11/03) Routine cleaning or testing of piped drainage systems and subway drainage channels shall be carried out by rodding or low pressure high volume jetting in accordance with Clause 521.

11 (11/03) The location of any obstruction that cannot be removed by flushing shall be marked on the ground using a wooden peg or other semi-permanent means and reported to the Overseeing Organisation using the Routine Maintenance Manual System (RMMS) referencing system in Part 3, Chapter 3.7.

12 All covers which have been removed for cleaning operations shall be replaced and evenly bedded.
13 The Contractor shall report any damage and defects to the drainage system or components to the Overseeing Organisation each day, or immediately if considered a safety hazard.

Cleaning Kerb or Channel Offlet Pipes

14 Where necessary all vegetation and debris shall be removed from around metal kerb weirs and the cover lifted for cleaning.

15 Offlets shall be cleaned such that all silt and loose obstructions are removed from the pipe. This shall be achieved by rodding or by using lorry-mounted drain clearance equipment comprising combination pressure jetting with high air flow suction equipment. The vehicle shall also be equipped with a hydraulically-powered grid lifter.

16 The Contractor shall ensure that each end of the offlet is free from vegetation or other obstructions including any material expelled from the pipe. Where the invert of the outlet is below the invert of the ditch, the bottom of the ditch shall be excavated until the invert of the pipe is exposed and the ditch invert regraded to facilitate flow from the outlet.

17 The location of any obstruction that cannot be removed shall be marked on the ground using a wooden peg or other semi-permanent means and reported to the Overseeing Organisation.

18 All covers lifted for cleaning operations shall be replaced and evenly bedded.

Cleaning of Bridge Drainage Systems

19 Cleaning of bridge bearing shelves, subway sumps, grit chambers and other bridge drainage systems shall be carried out by one of the following methods:

(i) vacuum/air suction having the ability to remove materials from depths of up to 9.0 m with a suction facility capable of displacing 55 m³/min of air at 95% vacuum;

(ii) (11/03) low pressure high volume jetting in accordance with Clause 521;

(iii) sweeping.

20 All adjacent surfaces of the structure shall be protected to prevent staining by arisings from the cleaning operation. All arisings shall be taken off Site.

21 The Contractor shall report to the Overseeing Organisation any damage or defects to the bridge drainage system.

521 (11/03) Low Pressure High Volume Jetting of Drainage Systems

1 Where stated in Appendix 5/1, the Contractor shall clean existing drainage systems in accordance with this Clause.

2 The drainage systems to be cleaned shall be as detailed in the Appendix 5/1.

3 The pipe material of the drainage systems to be cleaned shall be identified in Appendix 5/1. Where the material is unknown and cannot be verified by either visual inspection, without recourse to man-entry, or from drainage records, or damage to the pipeline is the suspected cause of a blockage, cleaning shall proceed on the basis of use of the lowest pump pressure stated in Table 5/12.

4 Where the cleaning forms part of the pre-cleansing works for the CCTV survey of drainage systems, the works shall be detailed in Appendix 90/1 (see Model Contract Documents for CCTV Survey of Highway Drainage, (MCHW 5.9.3)

Jetting of Piped Drainage Systems

5 Cleaning shall take place from downstream of the blockage in an upstream direction. The pipe shall be plugged below the jetting point to prevent contaminants flowing to the watercourse. The cleaning shall take place from a chamber, although it may be necessary to make a temporary excavation into the pipeline in some circumstances.

6 Should the Contractor find that it is not possible to jet in an upstream direction, then the pipe shall be plugged below the blockage and the jetter then used to “back jet” to a suction hose.

<table>
<thead>
<tr>
<th>Material</th>
<th>Maximum pump pressure (bar/psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown/structurally damaged</td>
<td>80/1200</td>
</tr>
<tr>
<td>Brick/masonry</td>
<td>100/1500</td>
</tr>
<tr>
<td>Plastics - Structural Wall</td>
<td>127/1900</td>
</tr>
<tr>
<td>Plastics - Solid Wall</td>
<td>127/1900</td>
</tr>
<tr>
<td>Concrete</td>
<td>340/5000</td>
</tr>
<tr>
<td>Clay</td>
<td>340/5000</td>
</tr>
</tbody>
</table>

7 The Contractor shall select a jethead that is appropriate for delivering the maximum jetting pressure for the pipe material and also the minimum volume of water for the appropriate pipe diameter stated in Table 5/13.
8 The jet head shall be of a configuration such that the number and direction of jets are adequate to be directed to the sides and soffit of the pipeline to prevent debris passing over the top of the jetting head.

Table 5/13: Minimum Jetting Flow Rates

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Minimum jetting flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown/structurally damaged</td>
<td>80/1200</td>
</tr>
<tr>
<td><230 mm</td>
<td>156 l/m</td>
</tr>
<tr>
<td>450 mm</td>
<td>270 l/m</td>
</tr>
<tr>
<td>900 mm</td>
<td>300 l/m</td>
</tr>
<tr>
<td>1600 mm</td>
<td>342 l/m</td>
</tr>
</tbody>
</table>

9 The Contractor shall provide suitable jetting equipment that shall include the provision of the following:

(i) operation at a maximum rate of 850 l/min at 150 bar/2250 psi;

(ii) liquid ring vacuum pump operating with air flows of 4000 m³ per hour, with a working vacuum of not less than 90%;

(iii) a minimum of 20 m of 100 mm diameter suction hose for cleaning pipes up to 300 mm diameter and 150 mm diameter suction hose for cleaning pipes of diameter greater than 300 mm;

(iv) minimum of 150 m of 25 mm or 38 mm diameter jetting hose and a capability of jetting up to 200 m;

(v) automatic and continuous water recycling;

(vi) silt, sand and rubble to be de-watered prior to discharge at licensed tip.

10 The Contractor shall ensure that no damage occurs to the manhole chamber or pipeline during insertion of the jetting equipment.

11 The jetting head shall be propelled through or over the blockage and then the hose pulled backwards enabling the force of the jet to break up the blockage material. The minimum force necessary to penetrate the blockage should be used but the pump pressures shall not exceed those stated in Table 5/12.

12 The hose shall be rewound at a rate of between 100 mm and 200 mm per second.

13 There is a possibility that damage may occur to certain pipe materials should the jetting head remain stationary thus the Contractor must ensure that the jetting head never remains stationary for more than 60 seconds.

14 Perforated pipes and porous concrete pipes commonly occur in piped highway drainage systems. Where their presence is discovered during the course of the works, the Overseeing Organisation shall be notified immediately and the cleaning operation suspended for that section of the works.

Cleaning of Linear Drainage Systems

15 Where possible the Contractor shall clear blockages in linear drainage channels and combined kerb drainage units by rodding.

16 Where silt removal is necessitated, the use of pressure jetting will result in the loss of pressure through the grating, slot or drainage holes together with the escape of silt and debris, unless the apertures can be temporarily covered. The application of pressure shall be regulated such that there is only sufficient to drive the jetting head across the silt to access remote from the point of entry.

17 If necessary the jetting head shall be changed for one that can deliver the highest volume of water at low pressure. The water pressure shall be sufficient to agitate the silt.

18 The nozzle shall be drawn back to the point of entry at a rate of between 100 mm and 200 mm per second.

Silt Removal

19 Suitable measures such as stanks or stoppers shall be positioned downstream of the drainage system to be cleaned to minimise the risk of sediment causing contamination of watercourses or soakaways.

20 Wherever practical the Contractor shall use equipment to carry debris over a greater depth than one atmosphere and with a capability to suck liquid.

21 All arisings from the cleaning process shall be disposed of in an environmentally sensitive manner in accordance with current legislation.

Health and Safety

22 The use of high pressure water can result in serious internal injuries that may not be apparent at the skin surface.

23 The Contractor shall ensure that all hoses are free from damage and that the equipment is in full working order.

24 Where overhead electric cables are present, there is a potential danger from accidental strike by a jet of water.
503NI Bedding, Laying and Surrounding of Pipes

1 Immediately following the excavation of the trench, the pipes shall be laid and jointed on the pipe bed. Pipes shall be laid so that each one is in contact with the bed throughout the length of its barrel. The pipes shall be laid at the level and gradients shown on the Drawings and schedules. The deviation in level from that specified at any point shall not exceed 20 mm and in addition the algebraic difference of the deviation in level at any two points on each pipe shall not exceed 30 mm. In the case of socketed or sleeve jointed pipes the bed shall be cut away and removed at each socket or sleeve to give a clearance of at least 50 mm, or 100 mm for trenches in material designated as Hard Material, so that the socket or sleeve does not bear on the bed. Pipes shall be laid on setting blocks only where a concrete bed or cradle is used.

Pipes and fittings shall be examined for damage and the joint surfaces and components shall be cleaned immediately before laying. Measures shall be taken to prevent soil or other material from entering pipes, and to anchor each pipe to prevent movement before the work is complete.

2 Pipes complying with BS 4962 : 1989 which are corrugated corollable perforated pipes shall, unless otherwise permitted in Appendix 5/1, be laid only by automatic single pass drain laying machines.

3 (05/01) Drainage pipe and bedding combinations shall be selected from the alternatives described in Appendix 5/1. Where recycled coarse aggregate or recycled concrete aggregate is used in this Series, it shall have been tested in accordance with Clause 710. Pipe bedding, haunching and surrounding material shall be as shown on HCD Drawing Numbers F1 and F2, and shall comply with the following:

(i) For pipes on beds shown on HCD Drawing Number F1 as Types B, F and S the granular material consisting of natural and/or recycled coarse aggregate or recycled concrete aggregate shall have:

(a) a grading in accordance with Table 5/3NI; and

(b) (11/03) a water-soluble sulfate content of less than 2.3 grams of sulfate (as SO₄) per litre when tested in accordance with TRL Report 447, Test No. 1; and

(c) (11/03) an oxidisable sulfides (OS) content of less than 0.46% sulfate (as SO₄) when tested in accordance with TRL Report 447, Tests No. 2 and 4; and

(d) (11/03) a total potential sulfate (TPS) content of less than 0.6% of sulfate (SO₄) when tested in accordance with TRL Report 447, Test No. 4.

(ii) (11/03) For pipes on beds shown on HCD Drawing Number F1 as Types N and T the granular material consisting of natural and/or recycled coarse aggregate or recycled concrete aggregate shall comply either with sub-Clause 3(i) of this Clause or with Table 5/4NI, with the water soluble, oxidisable sulfides and total potential sulfate content complying with (i) above.

TABLE 5/3NI: (11/03) Granular Materials to BS EN 12620 and Recycled Aggregates to Clause 710

<table>
<thead>
<tr>
<th>Nominal Pipe Diameter (mm)</th>
<th>BS EN 12620 Coarse Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Graded Aggregate Ranges (mm)</td>
</tr>
<tr>
<td>Not exceeding 140</td>
<td>-</td>
</tr>
<tr>
<td>Exceeding 140 but not exceeding 400</td>
<td>2/14 G₉₀/15 or 4/20 G₉₀/15</td>
</tr>
<tr>
<td>Exceeding 400</td>
<td>2/14 G₉₀/15, 4/20 G₉₀/15 or 4/40 G₉₀/15</td>
</tr>
</tbody>
</table>

TABLE 5/4NI: (11/03) Granular Materials to BS EN 12620 and Recycled Aggregates to Clause 710

<table>
<thead>
<tr>
<th>Nominal Pipe Diameter (mm)</th>
<th>BS EN 12620 0/4, 0/2 or 0/1 CP, MP or FP</th>
<th>BS EN 12620 All-in Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Limits</td>
<td>Nominal Sizes (mm)</td>
</tr>
<tr>
<td>Not exceeding 140</td>
<td>Overall Limits</td>
<td>0/10 G₉₀</td>
</tr>
<tr>
<td>Exceeding 140 but not exceeding 400</td>
<td>Overall Limits</td>
<td>0/10 G₉₀ or 0/20 G₉ₐ</td>
</tr>
<tr>
<td>Exceeding 400</td>
<td>Overall Limits</td>
<td>0/10 G₉₀, 0/20 G₉₀ or 0/40 G₉₀</td>
</tr>
</tbody>
</table>

Amendment - November 2003
Volume 1
Specification for Highway Works
Series 500
Drainage and Service Ducts

(iii) (11/03) For pipes on beds shown on HCD Drawing Number F1 as Types A and Z concrete shall be ST4 and ST2, in compliance to Clause 2602, respectively. Backfilling shall not be carried out until after the concrete has cured.

(iv) Except for filter drains a further surround above the bed, haunch and surround described above shall be provided to a height of 300 mm above the top of the pipe consisting of Class 8 lower trench fill material as described in Table 6/1 and in compliance to Series 600.

(v) Unless otherwise described in Appendix 5/1, the materials used for the bedding, haunching and surrounding of filter drains shall comply with the appropriate bedding, haunching and surrounding materials specified in sub-Clauses 503.3.(i) to 503.3.(iv) and with the requirements for backfilling specified in sub-Clause 505.3.

(vi) (11/03) The resistance to fragmentation of the coarse aggregate in accordance with clause 5.2 of BS EN 12620 shall be LA50.

4 Except where the pipeline is to be tested in compliance with Clause 509 before backfilling, the completion of the bedding, haunching and surrounding of the pipes is to be carried out immediately after jointing. The bed, haunch and surround shall be brought up equally on both sides of the pipe ensuring that it is in contact with the underside of the pipe barrel and be carefully compacted in layers not exceeding 150 mm thickness ensuring full compaction next to the trench walls. Pipes shall be maintained to line and level during the bedding, haunching and surrounding operations. Where pipelines are to be tested before being covered the bedding haunching and surrounding material shall only be brought up sufficiently to support the pipeline and the joints shall be left exposed until the test is completed satisfactorily.

5 Duct construction shall comply with the requirements of Appendix 5/2.

Protection of Existing Pipelines

6 (11/03) Where indicated in Appendices 5/1 and 5/2 existing pipelines shall be carefully exposed and any damaged pipes replaced. The pipelines shall be protected with ST2 concrete surround, in compliance to Clause 2602, to the thickness described in Appendices 5/1 and 5/2. For pipelines with flexible joints the concrete protection shall be carried out in accordance with Clause 504.5.

Backfilling shall be Granular Sub-base material Type 3 to Clause 850NI.

508NI Gullies and Pipe Junctions

1 (11/03) Gullies shall be trapped or untrapped as described in Appendix 5/1 and be in accordance with HCD Drawing Numbers F13 and F14. All ST concrete referred to in this Clause shall comply with Clause 2602 unless otherwise described in Appendix 5/1.

2 Gullies shall be constructed so that no part of the spout or trap has a cross-sectional area less than 2/3rd that of the outlet. The depth of water seal in trapped gullies shall be not less than 50 mm.

3 (11/03) Precast concrete gullies shall comply with BS 5911: Part 230 and clay gullies with BS EN 295. In situ concrete gullies shall be as described in Appendix 5/1 and constructed of ST4 concrete of 150 mm minimum thickness, using permanent or removable shuttering. Where in situ concrete gullies are formed with permanent shuttering, such shuttering shall have a current British Board of Agrément Roads and Bridges Certificate. Precast rectangular section gullies shall be as described in Appendix 5/1.

4 Gully gratings, kerb type gully covers and frames shall comply with BS EN 124 and the following shall be of the classes and sizes described in Appendix 5/1.

5 (05/01) The upper surface of gully gratings shall be flat except where otherwise described in Appendix 5/1. Slots in gratings or between gratings and frames shall not be orientated parallel to the direction of traffic except where the slots are less than 150 mm long or less than 20 mm wide. Minimum waterway areas shall be as specified in Appendix 5/1. Unless otherwise specified in Appendix 5/1, all gratings and frames shall be supplied in a fine cast (uncoated) condition. Where a coating is specified in Appendix 5/1, the coating shall only be applied when the surfaces of the casting are clean, free from rust and dry. Gully gratings shall be laid parallel to and 6 mm below the finished road surface. Hinged gratings shall be orientated to close in the direction of traffic flow. Frames shall be bedded on mortar complying with sub-Clause 507.16. Brickwork shall comply with sub-Clause 507.3.

6 (11/03) Backfilling to precast gullies shall be carried out up to sub-formation level with general fill material Class 1, as described in Table 6/1 compacted in compliance with Clause 612. Where mechanical compaction is impracticable, the backfilling shall be in ST2 concrete. The remainder of the backfilling shall be in appropriate capping and road pavement materials except that where mechanical compaction of capping or granular sub-base is impracticable ST2 concrete shall be used.
7 (11/03) Gully connection pipes shall be either flexible or rigid not exceeding 0.7 m in length with flexible joints for a distance of 2 m from the gully and shall be in accordance with sub-Clause 507.17 when entering chambers. Junction pipes shall be manufactured of the same type and class of material as the remainder of the pipes in the run. Junction pipes which are laid but not immediately connected, shall be fitted with temporary stoppers or seals and the position of all such junctions shall be clearly defined by means of stakes or tracing wires properly marked or labelled. Saddles may be used to form junctions only where permitted in Appendix 5/1. No internal projections greater than 5 mm will be permitted. Saddles for asbestos cement and plastics pipes shall be installed in accordance with the manufacturer’s recommendations. Saddles with clay pipes shall be jointed with mortar designation (i) complying with Clause 2404, excluding lime. Saddles and pipes shall be surrounded with ST2 concrete.

8 (05/01) Where the adjustment or replacement of existing frames and gratings is required, the units shall be taken up and re-fixed or removed and replaced with new units complying with sub-Clauses 4 and 5 of this Clause, or as described in Appendix 5/1. On taking up or removal of the unit, any concrete or mortar bedding shall be broken out and the surface prepared. Where existing frames and covers or gratings are to be adjusted, the Contractor shall take up the unit and clean it for re-use. The adjusted or replaced units shall be laid at a level, unless otherwise described in Appendix 5/1, 6 mm below the adjoining road surface on a mortar bed complying with sub-Clause 507.16. The finished thickness of the mortar bed shall be between 10 mm and 25 mm. Where required in Appendix 5/1, covers and gratings shall be bedded using a proprietary quick setting high strength mortar. Details of such mortar shall be to the approval of the Overseeing Organisation. Any additional adjustment shall be made by modifying the brickwork in compliance with sub-Clause 507.3 or by using a frame of suitable depth. On completion of the works, each grating shall be lifted and the frame and seating cleaned.